Skip to main content
Log in

Charnockitic magmatism in southern India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Large charnockite massifs cover a substantial portion of the southern Indian granulite terrain. The older (late Archaean to early Proterozoic) charnockites occur in the northern part and the younger (late Proterozoic) charnockites occur in the southern part of this high-grade terrain. Among these, the older Biligirirangan hill, Shevroy hill and Nilgiri hill massifs are intermediate charnockites, with Pallavaram massif consisting dominantly of felsic charnockites. The charnockite massifs from northern Kerala and Cardamom hill show spatial association of intermediate and felsic charnockites, with the youngest Nagercoil massif consisting of felsic charnockites. Their igneous parentage is evident from a combination of features including field relations, mineralogy, petrography, thermobarometry, as well as distinct chemical features. The southern Indian charnockite massifs show similarity with high-Ba-Sr granitoids, with the tonalitic intermediate charnockites showing similarity with high-Ba-Sr granitoids with low K2O/Na2O ratios, and the felsic charnockites showing similarity with high-Ba-Sr granitoids with high K2O/Na2O ratios. A two-stage model is suggested for the formation of these charnockites. During the first stage there was a period of basalt underplating, with the ponding of alkaline mafic magmas. Partial melting of this mafic lower crust formed the charnockitic magmas. Here emplacement of basalt with low water content would lead to dehydration melting of the lower crust forming intermediate charnockites. Conversely, emplacement of hydrous basalt would result in melting at higher {ie565-01} favoring production of more siliceous felsic charnockites. This model is correlated with two crustal thickening phases in southern India, one related to the accretion of the older crustal blocks on to the Archaean craton to the north and the other probably related to the collision between crustal fragments of East and West Gondwana in a supercontinent framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen D J, Lindsley D H and Davidson P M 1993 QUILF: a Pascal program to assess the equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz;Comp. Geosci. 19 1333–1350

    Article  Google Scholar 

  • Ashwal L D, Hamilton M A, Morel V P I and Rambeloson R A 1998 Geology petrology and isotope geochemistry of massif-type anorthosites from southwest Madagascar;Contrib. Mineral. Petrol. 133 389–401

    Article  Google Scholar 

  • Barrels R M and Mackenzie F T 1971Evolution of sedimentary rocks (New York: WW Norton and Comp. Inc.)

    Google Scholar 

  • Bartlett J M, Harris N B W, Hawkesworth C J and Santosh M 1995 New isotope constraints on the crustal evolution of South India and Pan-African granulite metamorphism;Geol. Soc. India Mem. 34 391–397

    Google Scholar 

  • Bartlett J M, Page D J S, Harris N B W, Hawkesworth C J and Santosh M 1998 The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: an example from the Proterozoic mobile belt of South India;Contrib. Mineral. Petrol. 131 181–195

    Article  Google Scholar 

  • Beard J S and Lofgren G E 1991 Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb;J. Petrol. 32 365–401

    Google Scholar 

  • Beard J S, Lofgren G E, Sinha A K and Tollo R P 1994 Partial melting of apatite-bearing charnockite granulite and diorite: melt compositions restite mineralogy and petrologic implications;J. Geophys. Res. 99 21591–21603

    Article  Google Scholar 

  • Bhattacharya A and Sen S K 1986 Granulite metamorphism, fluid buffering, and dehydration melting in the Madras charnockites and metapelites;J. Petrol. 27 1119–1141

    Google Scholar 

  • Bhattacharya S and Sen S K 2002 Discussion of the origin of ‘arrested’ charnockitisation in the Chilka Lake area, Eastern Ghats Belt, India;Geol. Mag. 139 361–364

    Article  Google Scholar 

  • Bohlender F, van Reenen D D and Barton J M 1992 Evidence for metamorphic and igneous charnockites in the southern Marginal zone of the Limpopo Belt;Precamb. Res. 55 429–449

    Article  Google Scholar 

  • Brandon A D and Meen J K 1995 Nd isotopic evidence for the position of southernmost Indian terranes within East Gondwana;Precamb. Res. 70 269–280

    Article  Google Scholar 

  • Braun I, Montel J-M and Nicollet C 1998 Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala khondalite belt, southern India;Chem. Geol. 146 65–85

    Article  Google Scholar 

  • Bryant C J, Arculus R J and Chappell B W 1997 Clarence river supersuite: 250 Ma Cordilleran tonalitic I-type intrusions in eastern Australia;J. Petrol. 38 975–1001

    Article  Google Scholar 

  • Cenki B, Kriegsman L M and Braun I 2002 Melt-producing and meltconsuming reactions in the Achankovil cordierite gneisses, South India;J. Meta. Geol. 20 543–561

    Article  Google Scholar 

  • Chacko T, Kumar G R R and Newton R C 1987 Metamorphic P-T conditions of the Kerala (South India) Khondalite Belt a granulite-facies supracrustal terrain;J. Geol. 95 343–358

    Google Scholar 

  • Chacko T, Kumar G R R, Meen J K and Rogers J J W 1992 Geochemistry of high grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites;Precamb. Res. 55 469–489

    Article  Google Scholar 

  • Chacko T, Lamb M and Farquhar J 1996 Ultra-high temperature metamorphism in the Kerala Khondalite Belt;Gond. Res. Group Mem. 3 157–165

    Google Scholar 

  • Chappell B W and White A J R 1974 Two contrasting granite types;Pacific Geol. 8 173–174

    Google Scholar 

  • Choudhary A K, Harris N B W, van Calsteren P and Hawkesworth C J 1992 Pan-African charnockite formation in Kerala, South India;Geol. Mag. 129 257–264

    Google Scholar 

  • Collins W J 1996 Sand I-type granitoids of the eastern Lachlan fold belt granitoids: products of three-component mixing;Trans. R. Soc. Edinburgh 88 171–179

    Google Scholar 

  • Collins W J, Beams S D, White A J R and Chappell B W 1982 Nature and origin of A-type granites with particular reference to southeastern Australia;Contrib. Mineral. Petrol. 80 189–200

    Article  Google Scholar 

  • Condie K C and Allen P 1984 Origin of Archaean charnockites from southern India; In:Archaean Geochemistry (eds) A Kröner, G N Hanson and A M Goodwin (Berlin: Springer) 183–203

    Google Scholar 

  • Condie K C, Allen P and Narayana B L 1982 Geochemistry of the Archaean lowto high-grade transition zone, southern India;Contrib. Mineral. Petrol. 81 157–167

    Article  Google Scholar 

  • Conrad W K, Nicholls I A and Wall V J 1988 Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo volcanic zone New Zealand and other occurrences;J. Petrol. 29 765–803

    Google Scholar 

  • Crawford A R 1969 India, Ceylon and Pakistan new age data and comparison;Nature 223 380–384

    Article  Google Scholar 

  • Debon F and Le Fort P 1988 A cationic classification of common plutonic rocks and their magmatis associations: principles, method, applications;Bull. Minéral. 111 493–510

    Google Scholar 

  • Dobmeier C and Raith M M 2000 On the origin of ‘arrested’ charnockitization in the Chilka Lake area, Eastern Ghats Belt, India: a reappraisal;Geol. Mag. 137 27–37

    Article  Google Scholar 

  • Drummond M S and Defant M J 1990 A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons;J. Geophys. Res. 95 21503–21521

    Google Scholar 

  • Duchesne J-C and Wilmart E 1997 Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite;J. Petrol. 38 337–369

    Article  Google Scholar 

  • Eggler D H 1987 Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints; In:Mantle metasomatism (eds) M A Menzies and C J Hawkesworth (London: Academic Press) 21–41

    Google Scholar 

  • Ellis D J and Thompson A B 1986 Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3+SiO2+H2O system under water-excess and water-deficient conditions to 10kb: some implications for the origin of peraluminous melts from mafic rocks;J. Petrol. 27 91–121

    Google Scholar 

  • Fowler M B and Henney P J 1996 Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis;Contrib. Miner. Petrol. 126 199–215

    Article  Google Scholar 

  • Fowler M B, Henney P J, Darbyshire D P F and Greenwood P B 2001 Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland;J. Geol. Soc. London 158 521–534

    Article  Google Scholar 

  • Friend C R L 1981 The timing of charnockite and granite formation in relation to influx of CO2 at Kabbaldurga, Karnataka, South India;Nature 294 550–552

    Article  Google Scholar 

  • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J and Frost C D 2001 A geochemical classification for granitic rocks;J. Petrol. 42 2033–2048

    Article  Google Scholar 

  • Frost C D and Frost B R 1997 Reduced rapakivi-type granite: the tholeiitic connection;Geology 25 647–650

    Article  Google Scholar 

  • Frost C D, Frost B R, Chamberlain K R and Edwards B R 1999 Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced rapakivi-type anorogenic granite;J. Petrol. 40 1771–1802

    Article  Google Scholar 

  • Green T H and Pearson N J 1986 Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T;Chem. Geol. 54 185–201

    Article  Google Scholar 

  • Griffiths B J, Jahn B-M and Sen S K 1987 Sm-Nd isotopes and REE geochemistry of Madras granulites, India: an introductory statement;Precamb. Res. 37 343–355

    Article  Google Scholar 

  • Hansen E C, Janardhan A S, Newton R C, Prame W K B N and Kumar G R R 1987 Arrested charnockite formation at Kabbaldurga, South India;Nature 278 511–514

    Google Scholar 

  • Harley S L and Santosh M 1995 Wollastonite at Nuliyam, Kerala, South India: a reassessment of CO2 infiltration and charnockite formation at a classic locality;Contrib. Mineral. Petrol. 120 83–94

    Google Scholar 

  • Harris N B W, Holt R W and Drury S A 1982 Geobarometry, geothermometry, and late Archean geotherms from granulite facies terrain of South India;J. Geol. 90 509–527

    Google Scholar 

  • Harris N B W, Santosh M and Taylor P N 1994 Crustal evolution in South India: constraints from Nd isotopes;J. Geol. 102 139–150

    Google Scholar 

  • Helz R T 1976 Phase relations of basalts in their melting ranges atPH 2O = 5kbar, part II: melt compositions;J. Petrol. 17 139–193

    Google Scholar 

  • Holland T H 1900 The charnockite series, a group of Archaean hypersthenic rocks in Peninsular India;Mem. Geol. Surv. India 28 192–249

    Google Scholar 

  • Holloway J R and Burnham C W 1972 Melting relations of basalt with equilibrium water pressure less than total pressure;J. Petrol. 13 1–29

    Google Scholar 

  • Holtz F and Johannes W 1994 Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas;Lithos 32 149–159

    Article  Google Scholar 

  • Holtz F, Pichavant M, Barbey P and Johannes W 1992 Effect of H2O on liquidus phase relations in the haplogranite system at 2 and 5kbar;Am. Mineral. 77 1223–1241

    Google Scholar 

  • Howie R A 1955 The geochemistry of the charnockite series of Madras, India;Trans. R. Soc. Edinburgh Earth Sci. 62 725–768

    Google Scholar 

  • Howie R A and Subramaniam A P 1957 The paragenesis of garnet in charnockite, enderbite, and related granulites;Mineral. Mag. 31 565–586

    Article  Google Scholar 

  • Jackson D H, Mattey D and Harris N B W 1988 Carbon isotopic compositions of fluid inclusions in charnockites from southern India;Nature 333 167–170

    Article  Google Scholar 

  • Jacobs J, Fanning C M, Henjes-Kunst F, Olesch M and Paech H-J 1998 Continuation of the Mozambique belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land;J. Geol. 106 385–406

    Google Scholar 

  • Janardhan A S, Jayananda M, and Shankara M A 1994 Formation and tectonic evolution of granulites from the Biligirirangan and Nilgiri hills, S. India: geochemical and isotopic constraints;J. Geol. Soc. India 44 27–40

    Google Scholar 

  • Janardhan A S, Newton R C and Hansen E C 1982 The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India;Contrib. Mineral. Petrol. 79 130–149

    Article  Google Scholar 

  • Jayananda M and Peucat J J 1996 Geochronological framework of southern India;Gond. Res. Group Mem. 3 53–75

    Google Scholar 

  • Jayananda M, Janardhan A S, Sivasubramanian P and Peucat J-J 1995 Geochronologic and isotopic constraints on the granulite formation in the Kodaikanal area, southern India;Geol. Soc. India Mem. 34 373–390

    Google Scholar 

  • Kaszuba J P and Wendlandt R F 2000 Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks;J. Petrol. 41 363–386

    Article  Google Scholar 

  • Kilpatrick J A and Ellis D J 1992 C-type magmas: igneous charnockites and their extrusive equivalents;Trans. R. Soc. Edinburgh Earth Sci. 83 155–164

    Google Scholar 

  • Kröner A, Hegner E, Collins A S, Windley B F, Brewer T S, Razakamanana T and Pidgeon R T 2000 Age and magmatic history of the Antananarivo Block central Madagascar as derived from zircon geochronology and Nd isotopic systematics;Am. J. Sci. 300 251–288

    Article  Google Scholar 

  • Kumar V N and Harley S L 2000 A reappraisal of the pressure-temperature path of granulites from the Kerala Khondalite Belt, southern India;J. Geol. 108 687–703

    Article  Google Scholar 

  • Le Maitre R W (ed) 2002Igneous rocks: A classification and glossary of terms (Cambridge Univ. Press)

    Google Scholar 

  • Litvinovsky B A, Steele I M and Wickham S M 2000 Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25kbar;J. Petrol. 41 717–737

    Article  Google Scholar 

  • Mahabaleswar B, Jayananda M, Peucat J J and Swamy S N 1995 Archean high grade gneiss complex from Satnur-Halagur-Sivasamudram areas, Karnataka, South India;J. Geol. Soc. India 45 33–49

    Google Scholar 

  • Martin H 1986 Effect of steeper Archaean geothermal gradint on geochemistry of subduction-zone magmas;Geology 14 753–756

    Article  Google Scholar 

  • Miller C F 1985 Are strongly peraluminous magmas derived from pelitic sedimentary sources?;J. Geol. 93 673–689

    Article  Google Scholar 

  • Miller J S, Santosh M, Pressley R A, Clemens A S and Rogers J J W 1996 A Pan-African thermal event in southern India;J. Southeast Asi. Earth Sci. 14 127–136

    Article  Google Scholar 

  • Mohan A and Jayananda M 1999 Metamorphism and isotopic evolution of granulites of southern India: reference to Neoproterozoic crustal evolution;Gond. Res. 2 251–262

    Article  Google Scholar 

  • Mohan A and Windley B 1993 Crustal trajectory of sapphirine-bearing granulites from Ganguvarpatti, South India: evidence for isothermal decompression path;J. Met. Geol. 11 867–878

    Article  Google Scholar 

  • Mojzsis S J, Devaraju T C and Newton R C 2003 Ion Microprobe U-Pb Age Determinations on Zircon from the Late Archean Granulite Facies Transition Zone of Southern India;J. Geol. 111 407–425

    Article  Google Scholar 

  • Montel J M and Vielzeuf D 1997 Partial melting of metagreywackes, Part II. Compositions of minerals and melts;Contrib. Mineral. Petrol. 128 176–196

    Article  Google Scholar 

  • Naha K, Srinivasan R and Jayaram S 1993 Structural relations of charnockites of the Archean Dharwar craton, southern India;J. Meta. Geol. 11 889–895

    Article  Google Scholar 

  • Nambiar C G, Bhaskar Rao B, Parthasarathy R and Fedkin V V 1992 Geochemistry and genesis of charnockites and associated gneisses from northern Kerala, India; In:In high-grade metamorphics (ed) A Barto. Theophrastus Pub, Athens 187–215

    Google Scholar 

  • Newton R C, Smith J V and Windley B F 1980 Carbonic metamorphism granulites and crustal growth;Nature 288 45–50

    Article  Google Scholar 

  • Patiño Douce A E 1997 Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids;Geology 25 743–746

    Article  Google Scholar 

  • Patiño Douce A E 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?;Geol. Soc. Sp. Pub. 168 55–75

    Google Scholar 

  • Patiño Douce A E and Beard J S 1995 Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15kbar;J. Petrol. 36 707–738

    Google Scholar 

  • Patiño Douce A E and McCarthy T C 1998 Melting of crustal rocks during continental collision and subduction; In:When continents collide: Geodynamics and geochemistry of ultrahigh pressure rocks (eds) B R Hacker and J G Liou (Dordrecht: Kluwer Academic Press) 27–55

    Google Scholar 

  • Pearce J A, Bender J F, De Long S E, Kidd W S F, Low P J, Guner Y, Saroglu F, Yilmaz Y, Moorbath S and Mitchell J G 1990 Genesis of collision volcanism in Eastern Anatolia, Turkey;J. Volcan. Geotherm. Res. 44 189–229

    Article  Google Scholar 

  • Pearce J A, Harris N B W and Tuttle A C 1984 Trace element discrimination diagrams for the tectonic interpretation of igneous rocks;J. Petrol. 25 956–983

    Google Scholar 

  • Percival J A and Mortensen J K 2002 Water-deficient calc-alkaline plutonic rocks of northeastern Superior Province, Canada: significance of charnockitic magmatism;J. Petrol. 43 1617–1650

    Article  Google Scholar 

  • Peucat J J, Mahabaleswar B and Jayananda M 1993 Age of younger tonalitic magmatism and granulite metamorphism in the South Indian transition zone (Krishnagiri area): comparison with older Precambrian gneisses from Hassan-Gorur area;J. Meta. Geol. 11 879–888

    Article  Google Scholar 

  • Peucat J J, Vidal P, Griffiths B J and Condie K C 1989 Sr, Nd and Pb isotopic systems in the Archaean low-to high-grade transition zone of southern India: syn-accretion vs. post-accretion granulites;J. Geol. 97 537–550

    Google Scholar 

  • Pichamuthu C S 1960 Charnockite in the making;Nature 188 135–136

    Article  Google Scholar 

  • Pichamuthu C S 1965 Regional metamorphism and charnockitization in Mysore state, India;Ind. Mineral. 6 119–126

    Google Scholar 

  • Raith M and Srikantappa C 1993 Arrested charnockite formation at Kottavattom, southern India;J. Meta. Geol. 11 815–832

    Article  Google Scholar 

  • Raith M, Karmakar S and Brown M 1997 Ultrahigh temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni Hill ranges, South India;J. Met. Geol. 15 379–399

    Article  Google Scholar 

  • Raith M, Srikantappa C, Ashamanjari K G and Spiering B 1990 The granulite terrane of the Nilgiri hills (southern India): characterization of high-grade metamorphism; In:Granulites and crustal evolution (eds) D Vielzeuf and Ph Vidal. NATO ASI series C 311 (Dordrecht: Kluwer Academic Publishers) 339–365

    Google Scholar 

  • Raith M, Srikantappa C, Buhl D and Kühler H 1999 The Nilgiri Enderbites, South India: nature and age constraints on protolith formation, high-grade metamorphism and cooling history;Precamb. Res. 98 129–150

    Article  Google Scholar 

  • Rajesh H M 1999 Characterization and origin of alkaline and calc-alkaline aluminous A-type granitoids from south-western India: implications for Gondwanaland tectonics;Unpublished DSc thesis Osaka City University, Japan 317p

  • Rajesh H M 2000 Characterization and origin of a compositionally zoned aluminous A-type granite from South India;Geol. Mag. 137 291–318

    Article  Google Scholar 

  • Rajesh H M 2003 Outcrop-scale silicate liquid immiscibility from an alkali syenite (A-type granitoid)-pyroxenite association near Puttetti, Trivandrum Block, South India;Contrib. Mineral. Petrol. 145 612–627

    Article  Google Scholar 

  • Rajesh H M 2004a The igneous charnockite—high-K alkali-calcic I-type granite—incipient charnockite association in Trivandrum Block, southern India;Contrib. Mineral. Petrol. 147 346–362

    Article  Google Scholar 

  • Rajesh H M 2004b Charnockite—calc-alkaline granite and Charnockite—alkali granite link in high-grade terrains: examples from southwestern India; (under revision)

  • Rajesh H M 2004c Progressive or continual exsolution in pyroxenes: an inidcator of polybaric igneous crystallization for the Perinthatta anorthositic gabbro, northern Kerala, southwestern India;J. Asian Earth Sci. (in press)

  • Rajesh H M, Santosh M and Yoshida M 1996 The felsic magmatic province in East Gondwana: implications for Pan-African tectonics;J. Southeast Asi. Earth Sci. 14 275–291

    Article  Google Scholar 

  • Rao R D, Charan S N and Natarajan R 1991 P-T conditions and geothermal gradients of gneiss-enderbitic rocks: Dharmapuri area, Tamil Nadu, India;J. Petrol. 32 539–554

    Google Scholar 

  • Rapp R P, Watson E B and Miller C F 1991 Partial melting of amphibolite/eclogites and the origin of Archean trondhjemites and tonalites;Precamb. Res. 51 1–25

    Article  Google Scholar 

  • Roche de La H 1972 Geochemical characterization of the metamorphic domains: survival and testimony of the premetamorphic history;Sci. Terre. 19 103–117

    Google Scholar 

  • Rushmer T 1991 Partial melting of two amphibolites: contrasting experiment results under fluid absent conditions;Contrib. Mineral. Petrol. 107 41–59

    Article  Google Scholar 

  • Santosh M, Harris N B W, Jackson D H and Mattey D P 1990 Dehydration and incipient charnockite formation: a phase equilibria and fluid inclusion study from southern India;J. Geol. 98 915–926

    Article  Google Scholar 

  • Santosh M, Tagawa M, Taguchi S and Yoshikura S 2003 The Nagercoil Granulite Block, southern India: petrology, fluid inclusions and exhumation history;J. Asian Earth Sci. 22 131–155

    Article  Google Scholar 

  • Santosh M, Tagawa M, Taguchi S and Yoshikura S 2004 Geochemical characterization of various rock units within the Nagercoil Granulite Block, southern India; (submitted)

  • SatishKumar M, Wada H and Santosh M 2002 Constraints on the application of carbon isotope thermometry in high- to ultrahigh-temperature metamorphic terranes;J. Met. Geol. 20 335–350

    Article  Google Scholar 

  • Scoates J S, Frost C D, Mitchell J N, Lindsley D H and Frost B R 1996 Residual liquid origin for a monzonitic intrusion in a mid-Proterozoic anorthosite complex: the Sybille intrusion, Laramie Anorthosite Complex, Wyoming;Geol. Soc. Am. Bull. 108 1357–1371

    Article  Google Scholar 

  • Sen G and Dunn T 1994 Dehydration melting of basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites;Contrib. Mineral. Petrol. 117 394–409

    Article  Google Scholar 

  • Shaw D M 1972 The origin of the Apslety gneiss, Ontario;Can. J. Earth Sci. 9 18–35

    Google Scholar 

  • Skjerlie K J and Johnston A D 1993 Fluid-absent melting behavior of an F-rich tonalitic gneiss ar mid-crustal pressures: implications for the generation of anorogenic granites;J. Petrol. 34 785–815

    Google Scholar 

  • Skjerlie K P and Johnston A D 1996 Vapor-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active-continental margins;J. Petrol. 37 661–691

    Article  Google Scholar 

  • Skjerlie K P, Patiño Douce A E and Johnston A D 1993 Fluid absent melting of a layered crustal protolith: implications for the generation of anatectic granites;Contrib. Mineral. Petrol. 114 365–378

    Article  Google Scholar 

  • Spooner C M and Fairbairn H W 1970 Stronitum 87/ Strontium 86 initial ratios in pyroxene granulite terrains;J. Geophys. Res. 75 6706–6713

    Article  Google Scholar 

  • Springer W and Seck H A 1997 Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas;Contrib. Mineral. Petrol. 127 30–45

    Article  Google Scholar 

  • Srikantappa C 1996 The Nilgiri granulites;Gond. Res. Group Mem. 3 185–222

    Google Scholar 

  • Srikantappa C, Raith M and Speiring B 1985 Progressive charnockitization of a leptynite-khondalite suite in southern Kerala, India—evidence for formation of charnockites through decrease of fluid pressure;J. Geol. Soc. India 26 849–872

    Google Scholar 

  • Stahle H J, Raith M, Hoernes S and Delfs A 1987 Element mobility during incipient granulite formation at Kabbaldurga, southern India;J. Petrol. 28 803–834

    Google Scholar 

  • Stern R J 1994 Arc assembly and continental collision in the Neoproterozoic East African orogen: implications for the consolidation of Gondwanaland;Ann. Rev. Earth Planet. Sci. 22 319–351

    Google Scholar 

  • Subramaniam A P 1959 Charnockites of the type area near Madras: a reinterpretation;Am. J. Sci. 257 321–353

    Article  Google Scholar 

  • Tarney J 1976 Geochemistry of Archaean high-grade gneisses with implications as to the origin and evolution of the Precambrian crust; In:The early history of the Earth (ed) B F Windley (London: Wiley) 405–417

    Google Scholar 

  • Tarney J and Jones C E 1994 Trace element geochemistry of orogenic igneous rocks and crustal growth models;J. Geol. Soc. London 151 855–868

    Google Scholar 

  • Tilley C E 1936 Enderbite, a new member of the charnockite series;Geol. Mag. 73 892–939

    Google Scholar 

  • Touret J L R and Hansteen T H 1988 Geothermobarometry and fluid inclusions in a rock from the Doddabetta charnockite complex, southwest India;Rend. Soc. Ital. Mineral. Petrol. 43 65–82

    Google Scholar 

  • Vinogradov A, Tugarinov A, Zhygov C, Stapnikova N, Bibikova F and Khorre K 1964 Geochronology of Indian Precambrian;XXII Int. Geol. Cong. Report X 531–567

    Google Scholar 

  • Warrier U C, Santosh M and Yoshida M 1995 First report of Pan-African Sm-Nd and Rb-Sr mineral isochron ages from regional charnockites of southern India;Geol. Mag. 132 253–260

    Article  Google Scholar 

  • Watson E B and Harrison M T 1983 Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types;Earth Planet. Sci. Lett. 64 295–304

    Article  Google Scholar 

  • Weaver B L 1980 Rare-earth element geochemistry of Madras granulites;Contrib. Mineral. Petrol. 71 271–279

    Article  Google Scholar 

  • Weaver B L, Tarney J, Windley B F, Sugavanan F B and Rao V V 1978 Madras granulites: Geochemistry and P-T conditions of crystallization; In:Archaean Geochemistry (eds) B F Windley and S M Naqvi (Amsterdam: Elsevier) 177–204

    Google Scholar 

  • Wendlandt R F 1981 Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites;Am. Mineral. 66 1164–1174

    Google Scholar 

  • White A J R and Chappell B W 1983 Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia;Geol. Soc. Am. Mem. 159 21–34

    Google Scholar 

  • Wilson M J 1989Igneous Petrogenesis (London: Unwin Hyman)

    Google Scholar 

  • Wolf M B and Wyllie J P 1994 Dehydration melting of amphibolite at 10 kbar: the effects of temperature and time;Contrib. Mineral. Petrol. 115 309–383

    Article  Google Scholar 

  • Wolf M B and Wyllie P J 1989 The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kbar;EOS 70 506

    Google Scholar 

  • Zhao J-X, Ellis D J, Kilpatrick J A and McCulloch M T 1997 Geochemical and Sr-Nd isotopic study of charnockites and related rocks in the northern Prince Charles Mountains East Antarctica: implications for charnockite petrogenesis and Proterozoic crustal evolution;Precamb. Res. 81 37–66

    Article  Google Scholar 

  • Zhou X Q, Bingen B, Demaiffe D, Liégois J-P, Hertogen J, Weis D and Michot J 1995 The 1160 Ma Hidderskog meta-charnockite: implications of this A-type pluton for the Sveconorwegian belt in Vest Agder (SW Norway);Lithos 36 51–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajesh, H.M., Santosh, M. Charnockitic magmatism in southern India. J Earth Syst Sci 113, 565–585 (2004). https://doi.org/10.1007/BF02704023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704023

Keywords

Navigation