Skip to main content
Log in

A preliminary geochemical study of zircons and monazites from Deccan felsic dikes, Rajula, Gujarat, India: Implications for crustal melting

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Zircons of 10–100μm size and monazites of up to 10μm size are present in rhyolite and trachyte dikes associated with Deccan basalts around Rajula in the southern Saurashtra Peninsula of Gujarat. On the basis of structural conformity of the felsic and basaltic dikes, K-Ar ages and trace element considerations, a previous study concluded that the felsic rocks are coeval with the Deccan Volcanics and originated by crustal anatexis. The felsic rocks contain two populations of zircons and monazites, one that crystallized from the felsic melt and the other that contains inherited crustal material. Trace element variations in the rhyolites and trachytes indicate that zircons and monazites crystallized from the felsic melts, but compositional analysis of a zircon indicates the presence of a small core possibly inherited from the crust. Hf compositional zoning profile of this zircon indicates that it grew from the host rhyolitic melt while the melt differentiated, and Y and LREE contents suggest that this zircon crystallized from the host melt. Pb contents of some monazites also suggest the presence of inherited crustal cores. Hence, any age determination by the U-Th-Pb isotopic method should be interpreted with due consideration to crustal inheritance. Temperatures estimated from zircon and monazite saturation thermometry indicate that the crust around Rajula may have been heated to a maximum of approximately 900°C by the intruding Deccan magma. Crustal melting models of other workers indicate that a 1–2 million year emplacement time for the Deccan Traps may be appropriate for crustal melting characteristics observed in the Rajula area through the felsic dikes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annen C and Sparks R S J 2002 Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust;Earth Planet. Sci. Lett. 203 937–955

    Article  Google Scholar 

  • Armstrong J T 1995 CITZAF—A package for correction programs for the quantitative electron microbeam x-ray analysis of thick polished materials, thin-films and particles;Microbeam Analysis 4 177–200

    Google Scholar 

  • Auden J B 1949 Dykes of western India;Transactions of National Institute of Science, India 3 123–157

    Google Scholar 

  • Bea F 1996 Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts;J. Petrol. 37 521–552

    Article  Google Scholar 

  • Belousova E A, Griffin W L, O'Reilly S Y and Fisher N I 2002 Igneous zircon: trace element composition as an indicator of source rock type;Contrib. Mineral. Petrol. 143 602–622

    Article  Google Scholar 

  • Bhattacharji S, Chatterjee N, Wampler J M, Nayak P N and Deshmukh S S 1996 Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood basalt volcanism near the K/T boundary: evidence from mafic dike swarms;J. Geol. 104 379–398

    Article  Google Scholar 

  • Chatterjee N and Bhattacharji S 2001 Origin of the felsic dikes and basaltic dikes and flows in the Rajula-Palitana-Sihor area of the Deccan Traps, Saurashtra, India: a geochemical and geochronological study;International Geology Review 43 1094–1116

    Article  Google Scholar 

  • Chatterjee N and Bhattacharji S 2002 A geochemical and geochronological study of felsic dikes associated with the northwestern Deccan basalts of southern Saurashtra, India;EOS Transactions, American Geophysical Union, Spring Meeting Supplement Abstract V21B-1083/19 S365

    Google Scholar 

  • Cherniak D J, Watson E B, Grove M and Harrison T M 2004 Pb diffusion in monazite: a combined RBS/SIMS study;Geochimica et Cosmochimica Acta 68/4 829–840

    Article  Google Scholar 

  • Evans O C and Hanson G N 1993 Accessory mineral fractionation of rare earth element (REE) abundances in granitic rocks;Chemical Geology 110 69–93

    Article  Google Scholar 

  • Fedden F 1884 Geology of Kathiawar peninsula in Gujarat;Memoir Geological Survey of India 21

  • Hoskin P W O and Schaltegger U 2003 The composition of zircon and igneous and metamorphic petrogenesis. In: “Zircon”, Reviews in Mineralogy & Geochemistry, (eds) J M Hanchar and P W O Hoskin,Mineralogical Society of America 53 27–62

  • Kaila K L 1988 Mapping the thickness of Deccan trap flows in India from DSS studies and inferences about a hidden Mesozoic basin in Narmada-Tapti region. In: “Deccan Flood Basalts”,Geological Society of India (Bangalore)Memoir 10 96–116

  • McDonough W F and Sun S S 1995 The composition of the Earth. In: “Chemical evolution of the mantle” (eds) W F McDonough, N T Arndt and S ShireyChemical Geology 120 223–253

  • Melluso L, Beccaluva L, Brotzu P, Gregnanin A, Gupta A K, Morbidelli L and Traversa G 1995 Constraints on the mantle sources of the Deccan Traps from the petrology and geochemistry of the basalts of Gujarat state (western India);J. Petrol. 36 1393–1432

    Google Scholar 

  • Misra K S 1981 The tectonic setting of Deccan volcanics in southern Saurashtra and northern Gujarat. In: “Deccan volcanism and related basalt provinces in other parts of the world” (eds) K V Subbarao and R N SukheswalaGeol. Soc. India (Bangalore)Memoir 3 81–86

  • Montel J-M 1986 Experimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800°C, 2kbar, under H2O-saturated conditions;Geology 14 659–662

    Article  Google Scholar 

  • Montel J-M 1993 A model for monazite/melt equilibrium and application to the generation of granitic magmas;Chemical Geology 110 127–146

    Article  Google Scholar 

  • Montel J-M, Foret S, Veschambre M, Nicollet C and Provost A 1996 Electron microprobe dating of monazite;Chemical Geology 131 37–53

    Article  Google Scholar 

  • Pyle J M, Spear F S and Wark D A 2002 Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. In: “Phosphates: geochemical, geobiological and materials importance”, Reviews in Mineralogy & Geochemistry, (eds) M J Kohn, J Rakovan and J M Hughes,Mineralogical Society of America 48 337–362

  • Rapp R P and Watson E B 1986 Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas;Contrib. Mineral. Petrol. 94 304–316

    Article  Google Scholar 

  • Sen G 1995 A simple petrologic model for the generation of Deccan Trap magmas;International Geology Review 37 825–850

    Google Scholar 

  • Spear F S and Pyle J M 2002 Apatite, monazite and xenotime in metamorphic rocks. In: “Phosphates: geochemical, geobiological and materials importance”, Reviews in Mineralogy & Geochemistry, (eds) M J Kohn, J Rakovan and J M Hughes,Mineralogical Society of America 48 293–336

  • Thomas J B, Bodnar R J, Shimizu N and Sinha A K 2002 Determination of zircon/melt partition coefficients from SIMS analysis of melt inclusions in zircon;Geochimica et Cosmochimica Acta 66 2887–2901

    Article  Google Scholar 

  • Thomas J B, Bodnar R J, Shimizu N and Chesner C A 2003 Melt inclusions in zircon. In: “Zircon”, Reviews in Mineralogy & Geochemistry, (eds) J M Hanchar and P W O Hoskin,Mineralogical Society of America 53 63–87

  • Uher P, Breiter K, Kleeka M and Pivec E 1998 Zircon in highly evolved Hercynian Homolka Granite, Moldanubian zone, Czech Republic: indicator of magma source and petrogenesis;Geologica Carpathica 49 151–160

    Google Scholar 

  • Wark D A and Miller C F 1993 Accessory mineral behavior during differentiation of a granite suite: monazite, xeno-time and zircon in Sweetwater Wash pluton, southeastern California, U.S.A.;Chemical Geology 110 49–67

    Article  Google Scholar 

  • Watson E B and Harrison T M 1983 Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types;Earth Planet. Sci. Lett. 64 295–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, N., Bhattacharji, S. A preliminary geochemical study of zircons and monazites from Deccan felsic dikes, Rajula, Gujarat, India: Implications for crustal melting. J Earth Syst Sci 113, 533–542 (2004). https://doi.org/10.1007/BF02704021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704021

Keywords

Navigation