Journal of Biosciences

, Volume 8, Issue 1–2, pp 107–119 | Cite as

Biophysical investigations on the active site of brain hexokinase

  • U. W. Kenkare
  • G. K. Jarori
  • S. R. Kasturi
  • A. Mehta
  • M. P. Pitale


Replacement of Mg (II), the natural activator of brain hexokinase (EC by paramagnetic Mn (II) without affecting the physiological properties of the enzyme, has rendered brain hexokinase accessible to investigations by magnetic resonance methods. Based on such studies, a site on the enzyme, where Mn (II) binds directly with high affinity has been identified and characterized in detail. Use ofβ,γ-bidentate Cr (III) ATP as an exchange-inert analogue for Mn (II) ATP has shown that Mn (II) binding directly to the enzyme has no catalytic role but another Mn (II) ion binding simultaneously and independently to the enzyme through the nucleotide bridge participates in enzyme function. However, using this direct binding Mn (II) ion and a covalently bound spin label as paramagnetic probes a beginning has been made in mapping the ligand binding sites of the enzyme. Ultra-violet difference spectroscopy has revealed the presence of at least two glucose 6-phosphate locations on the enzyme one of which presumably is the high affinity regulatory site modulated by substrate glucose. Elution behaviour of the enzyme on a phosphocellulose column suggests that glucose induces a specific phosphate site on the enzyme to which the phosphate bearing regulatory ligands of the enzyme may bind.


Hexokinase brain active site magnetic resonance studies enzyme ligand interactions ligand site mapping 

Abbreviations used


Glucose 6-phosphate


inorganic phosphate


proton relaxation rate


proton relaxation rate enhancement


N-ethyl morpholine


5, 5’-dithiobis-(2-nitro-benzoic acid)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buttlaire, D. H. and Cohn, M. (1974)J. Biol. Chem.,249, 5741.PubMedGoogle Scholar
  2. Colowick, S. P. (1973) inThe Enzymes 3rd edition (ed. P. D. Boyer) (New York: Academic Press) Vol. 9, p. 1.Google Scholar
  3. Cunningham, B. A., Raushel, F. M., Villafranca, J. J. and Benkovic, S. J. (1981)Biochemistry,20, 359.CrossRefGoogle Scholar
  4. Dunaway-Mariano, D. and Cleland, W. W. (1980)Biochemistry,19, 1496.CrossRefGoogle Scholar
  5. Dwek, R. A. (1973)Nuclear Magnetic Resonance in Biochemistry, (Oxford: Clarendon Press).Google Scholar
  6. Ellison, W. R., Lueck, J. D. and Fromm, H. J. (1974)Biochem. Biophys. Res. Commun.,57, 1214.CrossRefGoogle Scholar
  7. Ellison, W. R., Lueck, J. D. and Fromm, H. J. (1975)J. Biol. Chem.,250, 1864.PubMedGoogle Scholar
  8. Jarori, G. K., Kasturi, S. R. and Kenkare, U. W. (1981)Arch. Biochem. Biophys.,211, 258.CrossRefGoogle Scholar
  9. Jarori, G. K., Mehta, A., Kasturi, S. R. and Kenkare, U. W. (1984)Eur. J. Biochem.,143, 669.CrossRefGoogle Scholar
  10. Jones, R., Dwek, R. A. and Walker, I. O. (1972)Eur. J. Biochem.,28, 74.CrossRefGoogle Scholar
  11. Jones, R., Dwek, R. A. and Walker, I. O. (1973)Eur. J. Biochem.,34, 28.CrossRefGoogle Scholar
  12. Koenig, S. H. (1978)J. Mag. Reson.,31, 1.Google Scholar
  13. Koch, H. J., and Perlin, A. S. (1970)Carbohydr. Res.,15, 403.CrossRefGoogle Scholar
  14. Lazo, P. A., Sols, A. and Wilson, J. E. (1980)J. Biol. Chem.,255, 7548.PubMedGoogle Scholar
  15. Leigh, J. S. (1970)J. Chem. Phys.,52, 2608.CrossRefGoogle Scholar
  16. Mehta, A., Jarori, G. K. and Kenkare, U. W. (1983)Bull. Mag. Reson.,5, 252.Google Scholar
  17. Mehta, A. (1984)Spectroscopic Investigations on Bovine Brain Hexokinase, Ph.D. Thesis, University of Bombay, Bombay.Google Scholar
  18. Mildvan, A. S. and Cohn, M. (1963)Biochemistry,2, 910.CrossRefGoogle Scholar
  19. Mildvan, A. S. and Weiner, H. (1969)J. Biol. Chem.,244, 2465.PubMedGoogle Scholar
  20. Mildvan, A. S. and Cohn, M. (1970)Advan. Enzymol.,33, 1.Google Scholar
  21. Mildvan, A. S. and Gupta, R. K. (1978)Methods Enzymol.,49, Part G, 322.CrossRefGoogle Scholar
  22. Mildvan, A. S., Granot, J., Smith, G. M. and Liebman, M. N. (1980) inMethods for Determining Metal Ion Environments in Proteins, (eds D. W. Darnall and R. G. Wilkins) (New York: Elsevier) Vol 2, p. 211.Google Scholar
  23. Ning, J., Purich, D. L. and Fromm, H. J. (1969)J. Biol. Chem.,244, 3840.PubMedGoogle Scholar
  24. Purich, D. L., Fromm, H. J. and Rudolf, F. B. (1973)Advan. Enzymol.,39, 249.Google Scholar
  25. Redkar, V. D. and Kenkare, U. W. (1972)J. Biol. Chem.,247, 7576.PubMedGoogle Scholar
  26. Redkar, V. D. and Kenkare, U. W. (1975)Biochemistry,14, 4704.CrossRefGoogle Scholar
  27. Rose, I. A., O’Connell, E. L. and Litwin, S. (1974)J. Biol. Chem.,249, 5163.PubMedGoogle Scholar
  28. Rose, I. A., Warms, J. V. B. and Kosow, D. P. (1974)Arch. Biochem. Biophys. 164, 729.CrossRefGoogle Scholar
  29. Salas, M., Vinuela, E. and Sols, A. (1965)J. Biol. Chem.,240, 561.PubMedGoogle Scholar
  30. Schray, K. J. and Benkovic, S. J. (1978)Acc. Chem. Res. 11, 136.CrossRefGoogle Scholar
  31. Solheim, L. P. and Fromm, H. J. 1981Arch. Biochem. Biophys.,211, 92.CrossRefGoogle Scholar
  32. Solheim, L. P. and Fromm, H. J. (1983)Biochemistry,22, 2234.CrossRefGoogle Scholar
  33. Sols, A. and Crane, R. K. (1954)J. Biol Chem.,210, 581, 597.PubMedGoogle Scholar
  34. Swarup, G. (1979)Bovine Brain Mitochondrial Hexokinase: Chemical Investigation of the Active Site, Ph. D. Thesis, University of Bombay, Bombay.Google Scholar
  35. Swarup, G. and Kenkare, U. W. (1980)Biochemistry,19, 4058.CrossRefGoogle Scholar
  36. Swift, T. J. and Connick, R. E. (1962)J. Chem. Phys. 37, 307.CrossRefGoogle Scholar
  37. Waysbort, D. andNavon, G. (1978)J. Chem. Phys.,68, 3074.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • U. W. Kenkare
    • 1
  • G. K. Jarori
    • 1
  • S. R. Kasturi
    • 1
  • A. Mehta
    • 1
  • M. P. Pitale
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations