Advertisement

Journal of Biosciences

, Volume 8, Issue 1–2, pp 67–87 | Cite as

Homologous structural domains in chicken egg-white ovomucoid: Characterization and acid denaturation

  • A. Salahuddin
  • Sibghatullah
  • M. A. Baig
Article

Abstract

The primary structure of ovomucoid shows considerable sequence homology at three contiguous regions which form structural domains I, II and III. In order to see whether or not the three domains fold similarly and acquire similar overall native conformation/shape, two fragments A and C were obtained by controlled peptic digestion of ovomucoid. The two fragments were investigated for their chemical composition, molecular weight, anti-tryptic activity, hydrodynamic behaviour, optical properties and acid denaturation. Results on molecular weight, amino acid composition and inhibitory acitivity show that the fragments A and C correspond respectively to domain I-II and domain III. Optical data suggested more exposure of tyrosine residues in the fragments than in the intact molecule. Domain III exists in a compact and globular conformation under native conditions whereas domain I-II and ovomucoid appear to possess asymmetric conformation. Results on acid denaturation show that the process is thermodynamically reversible and that inter-domain separation probably precedes denaturation of domains during acidification of ovomucoid.

Keywords

Ovomucoid acid denaturation structural domains conformation proteins 

Abbreviations used

ATEE

N-acetyl-L-tyrosine ethyl ester

BAPA

α-N-benzoyl-DL-argininep-nitroanilide

APEE

N-acetyl-L-phenylalamine ethyl ester

SDS

sodium dodecyl sulphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, F. and Salahuddin, A. (1974)Biochemistry,13, 245.CrossRefGoogle Scholar
  2. Ahmad, F. and Salahuddin, A. (1975)Int. J. Peptide Protein Res.,7, 417.CrossRefGoogle Scholar
  3. Ahmad, F. and Salahuddin, A. (1976)Biochemistry,15, 5168.CrossRefGoogle Scholar
  4. Ansari, A. A., Kidwai, S. A. and Salahuddin, A. (1975)J. Biol. Chem.,250, 1625.PubMedGoogle Scholar
  5. Baig, M. A. and Salahuddin, A. (1978)Biochem. J.,171, 89.CrossRefGoogle Scholar
  6. Bull, H. B. (1981)Arch. Biochem. Biophys.,208, 229.CrossRefGoogle Scholar
  7. Chothia, C. (1975)Nature (London),245, 304.CrossRefGoogle Scholar
  8. Cohn, E. J. and Edsall, J. T. (1941)in Proteins, Amino Acids and Peptides, (New York: Reinhold)Google Scholar
  9. Davis, B. J. (1964)Ann. N. Y. Acad. Sci.,121, 404.CrossRefGoogle Scholar
  10. Donovan, J. W. (1967)Biochemistry,6, 3918.CrossRefGoogle Scholar
  11. Donovan, J. W. (1969) inPhysical Principles and Techniques of Protein Chemistry Part A (ed. S. J. Leach) (New York: Academic Press) p. 102.Google Scholar
  12. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956)Anal. Chem.,28, 350.CrossRefGoogle Scholar
  13. Foulk, C. W. andHollingsworth, M. (1923)J. Am. Chem. Soc.,45, 1220.CrossRefGoogle Scholar
  14. Ghelis, C. and Yon, J. (1982)Protein Folding (New York: Academic Press).Google Scholar
  15. Gray, W. R. (1967)Methods Enzymol.,11, 139.CrossRefGoogle Scholar
  16. Jirgonsons, B., Ikenaka, T. and Gorguraki, V. (1960)Makromol. Chem.,39, 149.CrossRefGoogle Scholar
  17. Kato, I., Schrode, J., Wilson, K. A. and Laskowski, M., Jr. (1976)Protides Biol. Fluids,23, 235.Google Scholar
  18. Kornfeld, R. and Kornfeld, S. (1976)Annu. Rev. Biochem.,45, 217.CrossRefGoogle Scholar
  19. Kuntz, I. D. and Kauzmann, W. (1974)Adv. Protein Chem.,28, 239.CrossRefGoogle Scholar
  20. Laskowski, M, Jr. (1966)Fed. Proc.,25, 20.PubMedGoogle Scholar
  21. Laskowski, M., Jr. and Kato, I. (1980)Annu. Rev. Biochem.,49, 593.CrossRefGoogle Scholar
  22. Laskowski, M, Jr., Tashiro, M., Empire, M. W., Park, S. J., Kato, I., Ardelt, W. and Wieczorek, M. (1983) inProteinase Inhibitors (eds N. Katunuma, H. Umezawa and H. Holzer) (Tokyo: Japan Scientific Societies Press) p. 55.Google Scholar
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951)J. Biol. Chem.,193, 265.Google Scholar
  24. Moore, S. and Stein, W. H. (1967)Methods Enzymol,11, 273.Google Scholar
  25. Nozaki, Y. (1972)Methods Enzymol.,26, 43.CrossRefGoogle Scholar
  26. Ogino, T., Croll, D. H., Kato, I. and Markley, J. L. (1982)Biochemistry,21, 3452.CrossRefGoogle Scholar
  27. Sibghatullah (1982) Ph.D. Thesis, Aligarh Muslim University, Aligarh.Google Scholar
  28. Stein, J. P., Catterall, J. F., Kristo, P., Means, A. R. and O’Malley, B. W. (1980)Cell,21, 681.CrossRefGoogle Scholar
  29. Steiner, R. F., Lippoldt, R. E., Edelhoch, H. and Fratteli, V. (1964)Biopolymers,1, 355.Google Scholar
  30. Tanford, C. (1961)Physical Chemistry of Macromolecules, (New York: John Wiley and Sons).Google Scholar
  31. Tanford, C. (1968)Adv. Protein Chem.,23, 121.CrossRefGoogle Scholar
  32. Tanford, C. (1970)Adv. Protein Chem.,24, 1.CrossRefGoogle Scholar
  33. Teale, F. W. J. (1960)Biochem. J.,67, 381.CrossRefGoogle Scholar
  34. Waheed, A. and Salahuddin, A. (1975a)Biochem. J.,147, 139.CrossRefGoogle Scholar
  35. Waheed, A. and Salahuddin, A. (1975b)Biochim. Biophys. Acta,379, 147.CrossRefGoogle Scholar
  36. Waheed, A., Qasim, M. A. and Salahuddin, A. (1977)Eur. J. Biochem.,76, 383.CrossRefGoogle Scholar
  37. Weber, K. and Osborne, M. (1969)J. Biol. Chem.,244, 4406.PubMedPubMedCentralGoogle Scholar
  38. Weber, K., Papamokos, E., Bode, W., Huber, R., Kato, I. and Laskowski, M., Jr. (1981)J. Mol. Biol. 149, 109.CrossRefGoogle Scholar
  39. Wetlaufer, D. B. (1962)Adv. Protein Chem.,17, 303.CrossRefGoogle Scholar
  40. Yanari, S. and Bovey, F. A. (1960)J. Biol. Chem.,235, 2818.PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • A. Salahuddin
    • 1
  • Sibghatullah
    • 1
  • M. A. Baig
    • 1
  1. 1.Protein Research Laboratory, Department of Biochemistry, Faculty of MedicineAligarh Muslim UniversityAligarhIndia

Personalised recommendations