Advertisement

Journal of Biosciences

, Volume 8, Issue 1–2, pp 57–66 | Cite as

Hierarchic organization of globular proteins: Experimental studies on thermolysin

  • Angelo Fontana
  • Claudio Vita
  • Daniele Dalzoppo
Article

Abstract

Previous studies from this laboratory have shown that the thermolysin fragment 121–316, comprising entirely the“all-α” COOH-terminal structural domain 158–316, as well as fragment 206–316 (fragment FII) are able to refold into a native-like, stable structure independently from the rest of the protein molecule. The present report describes conformational properties of fragments 228–316 and 255–316 obtained by chemical and enzymatic cleavage of fragment FII, respectively. These subfragments are able to acquire a stable conformation of native-like characteristics, as judged by quantitative analysis of secondary structure from far-ultra-violet circular dichroism spectra and immunochemical properties using rabbit anti-thermolysin antibodies. Melting curves of the secondary structure of the fragments show cooperativity with a temperature of half-denaturationTmof 65–66°C. The results of this study provide evidence that it is possible to isolate stable supersecondary structures (folding units) of globular proteins and correlate well with predictions of subdomains of the COOH-terminal structural domain 158–316 of thermolysin.

Keywords

Circular dichroism immunochemistry protein domains protein fragments thermolysin 

Abbreviation used

CD

Circular dichroism

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, C. C. and Isemberg, I. (1976)Biochemistry,8, 1947.Google Scholar
  2. Bornstein, P. and Ballian, G. (1977)Methods Enzymol.,47, 132.CrossRefGoogle Scholar
  3. Chang, C. T., Wu, C.-S. C. and Yang, J. T. (1978)Anal. Biochem.,91, 13.CrossRefGoogle Scholar
  4. Chen, Y., Yang, J. T. and Martinez, H. M. (1972)Biochemistry,11, 4120.CrossRefGoogle Scholar
  5. Chen, Y., Yang, J. T. and Chau, K. H. (1974)Biochemistry,13, 3350.CrossRefGoogle Scholar
  6. Colman, P. M., Jansonius, J. M. and Matthews, B. W. (1972)J. Mol. Biol.,70, 701.CrossRefGoogle Scholar
  7. Crippen, G. M. (1978)J. Mol. Biol.,126, 315.CrossRefGoogle Scholar
  8. Crumpton, M. J. (1974) inThem Antigens, Vol. 2 (ed. M. Sela) (New York: Academic Press) p. 1.Google Scholar
  9. Dalzoppo, D., Vita, C. and Fontana, A. (1985)J. Mol. Biol.,182, 331.CrossRefGoogle Scholar
  10. Fontana, A., Vita, C. and Chaiken, I. M. (1983)Biopolymers,22, 69.CrossRefGoogle Scholar
  11. Greenfield, N. J. and Fasman, G. D. (1969)Biochemistry,8, 4108.CrossRefGoogle Scholar
  12. Holmes, M. A. and Matthews, B. W. (1982)J. Mol. Biol.,160, 623.CrossRefGoogle Scholar
  13. Hennessey, J. P. and Johnson, W. C., Jr. (1981)Biochemistry,15, 688.Google Scholar
  14. Jaenicke, R. (1984)Angew. Chem. Int. Ed. Engl.,23, 395.CrossRefGoogle Scholar
  15. Janin, J. and Wodak, S. J. (1983)Prog. Biophys. Mol. Biol.,42, 21.CrossRefGoogle Scholar
  16. Lazdunski, C. J. (1976)Trends Biochem. Sci., 231.Google Scholar
  17. Lee, B. and Richards, F. M. (1971)J. Mol. Biol.,55, 379.CrossRefGoogle Scholar
  18. Lesk, A. M. and Rose, G. D. (1981)Proc. Natl Acad. Sci. USA,78, 4304.CrossRefGoogle Scholar
  19. Levitt, M. and Chothia, C. (1976)Nature (London),261, 552.CrossRefGoogle Scholar
  20. Matthews, B. W., Jansonius, J. N., Colman, P. M., Schoenborn, P. M. and Dupourque, D. (1972)Nature (London),238, 37.CrossRefGoogle Scholar
  21. Matthews, B. W., Weaver, L. H. and Kester, W. R. (1974)J. Biol. Chem.,249, 8030.PubMedGoogle Scholar
  22. Rashin, A. A. (1979)Stud. Biophys. 77, 177.Google Scholar
  23. Rashin, A. A. (1981)Nature (London),291, 85.CrossRefGoogle Scholar
  24. Rashin, A. A. (1984)Biochemistry,23, 2021.Google Scholar
  25. Reichlin, M. (1975)Adv. Immunol.,20, 71.CrossRefGoogle Scholar
  26. Richardson, J. S. (1981)Adv. Protein Chem.,34, 167.CrossRefGoogle Scholar
  27. Rose, G. D. (1979)J. Mol. Biol.,134, 447.CrossRefGoogle Scholar
  28. Rossmann, M. G. and Argos, P. (1981)Ann. Rev. Biochem.,50, 497.CrossRefGoogle Scholar
  29. Schulz, G. (1977)Angew. Chem. Int. Ed. Engl.,16, 23.CrossRefGoogle Scholar
  30. Siegel, J. B., Steinmetz, W. E. and Long, G. L. (1980)Anal. Biochem.,104, 160.CrossRefGoogle Scholar
  31. Titani, K., Hermodson, M. A., Ericsson, L. H., Walsh, K. A. and Neurath, H. (1972)Biochemistry,11, 2427.CrossRefGoogle Scholar
  32. Tuzimura, K., Konno, T., Meguro, H., Hatano, M., Murakami, T., Kashiwabara, K., Saito, K., Kondo, Y. and Suzuki, T. M. (1977)Anal. Biochem.,81, 167.CrossRefGoogle Scholar
  33. Vita, G, Dalzoppo, D. and Fontana, A. (1983)Int. J. Peptide Protein Res.,21, 49.CrossRefGoogle Scholar
  34. Vita, C., Dalzoppo, D. and Fontana, A. (1984)Biochemistry,23, 5512.CrossRefGoogle Scholar
  35. Vita, C. and Fontana, A. (1982)Biochemistry,21, 5196.CrossRefGoogle Scholar
  36. Vita, C., Fontana, A. and Chaiken, I. M. (1982)Biochemistry,21, 2016.CrossRefGoogle Scholar
  37. Vita, C., Fontana, A., Seeman, J. R. and Chaiken, I. M. (1979)Biochemistry,18, 3023. Weber, P. C. and Salemme, F. R. (1980)Nature (London),287, 82.CrossRefGoogle Scholar
  38. Wetlaufer, D. B. (1973)Proc. Natl. Acad. Sci. USA,70, 697.CrossRefGoogle Scholar
  39. Wetlaufer, D. B. (1981)Adv. Protein Chem.,34, 61.CrossRefGoogle Scholar
  40. Wodak, S. J. and Janin, J. (1981)Biochemistry,20, 6544.CrossRefGoogle Scholar
  41. Wu, C.-S. and Yang, J. T. (1976)Biochemistry,15, 3007.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • Angelo Fontana
    • 1
  • Claudio Vita
    • 1
  • Daniele Dalzoppo
    • 1
  1. 1.Institute of Organic Chemistry,Biopolymer Research Centre of CNRUniversity of PaduaPaduaItaly

Personalised recommendations