Skip to main content
Log in

Decapod crustacean chelipeds: an overview

Journal of Biosciences Aims and scope Submit manuscript

Abstract

The structure, growth, differentiation and function of crustacean chelipeds are reviewed. In many decapod crustaceans growth of chelae is isometric with allometry level reaching unity till the puberty moult. Afterwards the same trend continues in females, while in males there is a marked spurt in the level of allometry accompanied by a sudden increase in the relative size of chelae. Subsequently they are differentiated morphologically into crusher and cutter making them heterochelous and sexually dimorphic. Of the two, the major chela is used during agonistic encounters while the minor is used for prey capture and grooming. Various biotic and abiotic factors exert a negative effect on cheliped growth. The dimorphic growth pattern of chelae can be adversely affected by factors such as parasitic infection and substrate conditions. Display patterns of chelipeds have an important role in agonistic and aggressive interactions. Of the five pairs of pereiopods, the chelae are versatile organs of offence and defence which also make them the most vulnerable for autotomy. Regeneration of the autotomized chelipeds imposes an additional energy demand called “regeneration load” on the incumbent, altering energy allocation for somatic and/or reproductive processes. Partial withdrawal of chelae leading to incomplete exuviation is reported for the first time in the laboratory and field inMacrobrachiumspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abby-Kalio N J and Warner G F 1989 Heterochely and handedness in the shore crabCarcinus maenas (L.) (Crustacea: Brachyura);Zool. J. Linn. Soc. 96 19–26

    Google Scholar 

  • Abello P, Warman C G, Reid D G and Naylor E 1994 Chela loss in the shore crab,Carcninus maenas (Crustacea: Brachyura) and its effect on mating success;Mar. Biol. 121 247–252

    Google Scholar 

  • Ahmed M 1978 Development of asymmetry in the fiddler crabUca cumulanta Crane, 1943 (Decapoda, Brachyura);Crustaceana 34 294–300

    Google Scholar 

  • Aiken D E and Waddy S L 1992 The growth process in crayfish;Rev. Aquat. Sci. 6 335–381

    Google Scholar 

  • Ary R D, Bartell C K and Poirrier M A 1987 The effects of chelotomy on molting in the blue crab,Callinectes sapidus;J. Shellfish Res. 6 103–108

    Google Scholar 

  • Atema J and Cobb J S 1980 Social behavior; inThe biology and management of lobsters (eds) J S Cobb and B F Phillips (New York: Academic Press) vol 1, pp 409–450

    Google Scholar 

  • Averof M and Patel N H 1997 Crustacean appendage evolution associated with changes inHox genes expression;Nature (London) 388 682–686

    CAS  Google Scholar 

  • Balasundaram C and Mariappan P 1998 Observations on the sheltering behaviour ofMacrobrachium nobilii (Henderson and Matthai 1910); inNatl. Symp. Sustainable Aquaculture, Feb. 20–21, 1998, University of Delhi, New Delhi. Abstract No. 2

    Google Scholar 

  • Barki A, Karplus I and Goren M 1991 Morphotype related dominance hierarchies in males ofMacrobrachium rosenbergii (Crustacea, Palaemonidae);Behaviour 117 145–160

    Google Scholar 

  • Barnes R S K 1968 Relative carapace and chela proportions in some Ocypodid crabs (Brachyura, Ocypodidae);Crustaceana 14 131–136

    Google Scholar 

  • Barnwell F H 1982 The prevalence of male right-handedness in the Indo-West Pacificfiddler crabsUca vocans (Linnaeus) andU. tetragonon (Herbst) (Decapoda: Ocypodidae);J. Crust Biol. 2 70–83

    Google Scholar 

  • Bennett D B 1973 The effect of limb loss and regeneration on the growth of the edible crab,Cancer pagurus L.;J. Exp. Mar. Biol. Ecol. 13 45–53

    Google Scholar 

  • Bliss D E 1960 Autotomy and regeneration; inThe physiology of crustacea (ed.) T H Waterman (New York: Academic Press) vol 1, pp 561–589

    Google Scholar 

  • Bock W J and von Wahlert G 1965 Adaptation and the formfunction complex;Evolution 19 269–299

    Google Scholar 

  • Briggs P T and Mushacke F M 1979 The American lobster and the pot fishery in the inshore waters of the south shore of Long Island, New York;N.Y. Fish Game J. 27 156–178

    Google Scholar 

  • Brown S C, Cassuto S R and Loos R W 1979 Biomechanics of chelipeds in some decapod crustaceans;J. Zool. 188 143–159

    Google Scholar 

  • Bush S F 1930 Asymmetry and relative growth of parts in the two sexes of the hermit crab,Eupagurus prideauxi;Wilhelm Roux' Arch. Entwicklungsmech. Org. 123 39–79

    Google Scholar 

  • Chapman C J and Rice A L 1971 Some direct observations on the ecology and behaviour of the Norway lobsterNephrops norvegicus;Mar. Biol. 10 321–329

    Google Scholar 

  • Cheng J-H and Chang E S 1993 Determinants of postmolt size in the American lobster (Homarus americanus). 1. D sub(1) super(3) is the critical stage;Can. J. Fish. Aquat. Sci. 50 2106–2111

    Google Scholar 

  • Cheung T S 1976 A biostatistical study of the functional consistency in the reversed claws of the adult male stone crabs,Menippe mercenaria (Say);Crustaceana 31 137–144

    Google Scholar 

  • Chokki H and Ishihara T 1994 The second specimen ofProcambarus (Scapulicambarus) clarkii (Girard) bearing malformed chela;Bull. Owakidani Nat. Hist. Mus. Hakone 12 1–3 (in Japanese)

    Google Scholar 

  • Clayton D A 1990 Crustacean allometric growth: a case for caution;Crustaceana 58 270–290

    Google Scholar 

  • Crane J 1975The fiddler crabs of the world (Ocypodidae: Genus Uca) (New Jersey: Princeton University Press)

    Google Scholar 

  • Crothers J H 1967 The biology of the shore crabCarcinus maenas (L.);Field Stud. 2 407–434

    Google Scholar 

  • Dahl E 1956 Some crustacean relationships; inBertil hanstrom: Zoological papers in honor of his sixty-fifth birthday (ed.) K G Wingstrand (Sweden: Lund Zool Inst) pp 138–147

    Google Scholar 

  • Darby H H 1934 The mechanism of asymmetry in the Alpheidae;Carnegie Inst. Washington Publ. 28 349–361

    Google Scholar 

  • Davenport J, Spikes M, Thornton S M and Kelly B O 1992 Crab-eating in the diamond black terrapinMalaclemys terrapin: dealing with dangerous prey;J. Mar. Biol. Assoc. U.K.;72 835–848

    Google Scholar 

  • Davis T A 1987 Laterality in Crustacea;Proc. Indian Natl. Sci. Acad. B53 47–60

    Google Scholar 

  • Dawes B 1934 A study of normal and regenerative growth in pistol shrimp,Alpheus dentipes (Guèrin);Wilhelm Roux' Arch. Entwicklungsmech. Org. 131 543–574

    Google Scholar 

  • Diaz G G, Nakagawa H and Kasahara S 1990 Effect of propodus excision on growth and survival in giant freshwater prawnMacrobrachium rosenbergii;J. Fac. Appl. Biol. Sci. (Hiroshima Univ.) 29 19–24

    Google Scholar 

  • Dingle H 1969 Statistical and information analysis of aggressive communication in the mantis shrimpGonodactylus bredini Manning;Anim. Behav. 17 561–575

    Google Scholar 

  • Durkin J T, Buchanan K D and Blahm T H 1984 Dungeness crab leg loss in the Columbia river estuary;Mar. Fish. Rev. 46 22–24

    Google Scholar 

  • Edwards J S 1972 Limb loss and regeneration in two crabs: the king crab,Paralithodes camtschatica and the tanner crabChionoecetes bairdi;Acta. Zool. 53 105–112

    Article  Google Scholar 

  • Estrella B T and Armstrong M P 1994 Massachusetts coastal commercial lobster trap sampling program May–November 1993;Mass. Div. Mar. Fish. 30

  • Farmer A S 1974 The development of external sexual characters ofNephrops norvegicus (L.) (Decapoda: Nephropidae);J. Nat. Hist. 8 241–255

    Google Scholar 

  • Faxon W 1881 On some crustacean deformities;Bull. Mus. Comp. Zool. 8 257–274

    Google Scholar 

  • Fryer G 1960 The feeding mechanism of some atyid prawns of the genusCaridina;Trans R. Soc. Edinburgh 54 335–381

    Google Scholar 

  • Finney W C and Abele L G 1981 Allometric variation and sexual maturity in the obligate coral commensalTrapezia ferruginea Latreille (Decapoda, Xanthidae);Crustaceana 41 113–130

    Google Scholar 

  • Garvey J E and Stein R A 1993 Evaluating how chela size influences the invasion potential of an introduced crayfish (Orconectes rusticus);Am. Midl. Nat. 129 172–181

    Google Scholar 

  • Goldstein J S and Noetzli C H 1997 Substrate variability as critical developmental factor in the claw asymmetry of the North American lobster,Homarus americanus;Today's Aquaculture 6 4–5 and 11

    Google Scholar 

  • Govind C K 1989 Asymmetry in lobster claws;Am. Sci. 77 468–474

    Google Scholar 

  • Govind C K, Mellon, DeF and Quigley M M 1987 Muscle and muscle fiber type transformation in clawed crustaceans;Am. Zool. 27 1079–1098

    Google Scholar 

  • Govind C K and Lang F 1981 Physiological identification and asymmetry of lobster claw closer motorneurons;J. Exp. Biol. 94 329–339

    Google Scholar 

  • Govind C K and Pearce J 1988a Independent development of bilaterally homologous closer muscles in lobster claws;Biol. Bull. 175 430–433

    Google Scholar 

  • Govind C K and Pearce J 1988b Remodeling of nerves during claw reversal in adult snapping shrimps;J. Comp. Neurol. 268 121–130

    PubMed  CAS  Google Scholar 

  • Govind C K and Pearce J 1994 Muscle remodelling in adult snapping shrimps via fat-fiber degeneration and slow-fiber genesis and transformation;Cell Tissue Res. 276 445–454

    Google Scholar 

  • Govind C K, Pearce J and Potter D J 1988 Neural attrition following limb loss and regeneration in juvenile lobsters;J. Neurobiol. 15 4209–4222

    Google Scholar 

  • Grandjean F, Romain D, Avila-Zarza C, Bramard M, Souty-Grosset C and Mocquard J P 1997 Morphometry, sexual dimorphism and size at maturity of the white-clawed crayfish,Austropotamobius pallipes pallipes (Lereboullet) from a wild French population at Deux-Sevres (Decapoda, Astacidea);Crustaceana 70 31–44

    Google Scholar 

  • Haley S R 1969 Relative growth and sexual maturity of the Texas ghost crab,Ocypode quadrata (Fabr.) (Brachyura, Ocypodidae);Crustaceana 17 285–297

    Google Scholar 

  • Hamilton P V, Nishimoto R T and Halusky J G 1976 Cheliped laterality inCallinectes sapidus (Crustacea: Portunidae);Biol. Bull. 150 393–401

    PubMed  CAS  Google Scholar 

  • Hartnoll R G 1960Entionella monensis sp. nov., an entoniscis parasite of the crabEurynome aspera (Pennant);J. Mar. Biol. Assoc. U.K. 39 101–107

    Google Scholar 

  • Hartnoll R G 1963 The biology of Manx spider crabs;Proc. Zool. Soc. London 141 423–496

    Google Scholar 

  • Hartnoll R G 1974 Variations in growth pattern between some secondary sexual characters in crabs (Decapoda, Brachyura);Crustaceana 27 131–136

    Google Scholar 

  • Hartnoll R G 1982 Growth; inThe biology of crustacea (ed.) L G Abele (New York: Academic Press) vol. 2, pp 111–196

    Google Scholar 

  • Hazlett B A 1962 Aspects of the biology of snapping shrimp (Alpheus andSynapheus);Crustaceana 4 82–83

    Google Scholar 

  • Hazlett B A 1972 Responses to agonistic postures by the spider crabMicrophrys bicornutus;Mar. Behav. Physiol. 1 85–92

    Google Scholar 

  • Hazlett B A and Bossert W H 1965 A statistical analysis of the aggressive communication systems of some hermit crabs;Anim. Behav. 13 357–373

    PubMed  CAS  Google Scholar 

  • Hazlett B A and Winn H E 1962 Sound production and associated behavior of Bermuda crustaceans (Panulirus, Gonodactylus, Alpheus andSynalpheus);Crustaceana 4 25–38

    Google Scholar 

  • Herberholz J and Schmitz B 1998 Role of mechanosensory stimuli in intraspecific agonistic encounters of the snapping shrimp (Alpheus heterochaelis);Biol. Bull. 195 156–167

    Google Scholar 

  • Herrick F H 1911 Natural history of American lobster;Bull. U.S. Bur. Fish. 29 149–408

    Google Scholar 

  • Hopkins P M 1993 Regeneration of walking legs in the fiddler crabUca pugilator;Am. Zool. 33 348–356

    Google Scholar 

  • Hughes R N 1989 Foraging behaviour of a tropical crab,Ozius verreauxii;Proc. R.. Soc. London B237 201–212

    Google Scholar 

  • Huntingford F A, Taylor A C, Smith, I P and Thorpe K E 11995 Behavioural and physiological studies of aggression in swimming crabs;J. Exp. Mar. Biol. Ecol. 193 21–39

    Google Scholar 

  • Jachowski R L 1974 Agonistic behavior of the blue crab,Callinectes sapidusRathbun;Behaviour 50 232–251

    Google Scholar 

  • Jones M B 1978 Aspects of the biology of the big-handed crab,Heterozius rotundifrons (Decapoda: Brachyura), from Kaikoura, New Zealand;N.Z. J. Zool. 5 783–794

    Google Scholar 

  • Juanes F and Hartwick E B 1990 Prey size selection in dungeness crabs: the effect of claw damage;Ecology 71 744–758

    Google Scholar 

  • Juanes F and Smith L D 1995 The ecological consequences of limb damage and loss in decapod crustaceans: a review and prospectus;J. Exp. Mar. Biol. Ecol. 193 197–223

    Google Scholar 

  • Kaestner A 1970Invertebrate zoology (translated by H W Levi and L R Levi), vol 3, (New York: Wiley Interscience)

    Google Scholar 

  • Karplus I, Samsonov E, Hulata G and Milstein A 1989 Social control of growth inMacrobrachium rosenbergii. I. The effect of claw ablation on survival and growth of communally raised prawns;Aquaculture 80 325–335

    Google Scholar 

  • Kendall R A, Van Olst J C and Carlberg J M 1982 Effects of chelae immobilization on growth and survivorship for individually and communally raised lobsters,Homarus americanus;Aquaculture 29 359–372

    Google Scholar 

  • Kennelly S J, Watkins D and Craig J R 1990 Mortality of discarded spanner crabs,Ranina ranina (Linnaeus) in a tanglenet fishery-laboratory and field experiments;J. Exp. Mar. Biol. Ecol. 140 39–48

    Google Scholar 

  • Kirkwood J M and Brown I W 1998 Effect of limb damage on the survival and burial time of discarded spanner crabsRanina ranina (Linnaeus);Mar. Freshwater Res. 49 41–45

    Google Scholar 

  • Kuris A M and Mager M 1975 Effect of limb regeneration on size increase a molt of the shore crabsHemigrapsus oregonensis andPachygrapsus crassipes;J. Exp. Zool. 193 353–360

    PubMed  CAS  Google Scholar 

  • Kuris A M, Ra'anan Z, Sagi A and Cohen D 1987 Morphotypic differentiation of male Malaysian giant prawns,Macrobrachium rosenbergii;J. Crust. Biol. 7 219–237

    Google Scholar 

  • Lee C L and Fielder D R 1983 Agonistic behaviour and the development of dominance hierarchies in the freshwater prawn,Macrobrachium australiense Holthuis, 1950 (Crustacea: Palaemonidae);Behaviour 83 1–17

    Google Scholar 

  • Lee S Y 1995 Cheliped size and structure: the evolution of multi-functional decapod organ;J. Exp. Mar. Biol. Ecol. 193 161–176

    Google Scholar 

  • Lee S Y and Seed R 1992 Ecological implications of the cheliped size in crabs: some data fromCarcinus maenas andLiocarcinus holsatus;Mar. Ecol. Prog. Ser. 84 151–160

    Google Scholar 

  • Levinton J S, Judge M L and Kurdziel J P 1995 Functional differences between the major and minor claws of fiddler crabs (Uca, family Ocypodidae, Order Decapoda, Subphylum Crustacea): A result of selection or developmental constraint?;J. Exp. Mar. Biol. Ecol. 193 147–160

    Google Scholar 

  • Lochhead J H 1961 Locomotion; inThe physiology of crustacea (ed.) T H Waterman (New York: Academic Press) vol 2, pp 313–364

    Google Scholar 

  • Luppi A T, Bas C C, Spivak E D and Anger K 1997 Fecundity of two grapsid crab species in the Laguna Mar Chiquita, Argentina;Arch. Fish. Mar. Res. 45 149–166

    Google Scholar 

  • MacGinitie G E and MacGinitie N 1949Natural history of marine animals (New York: McGraw Hill)

    Google Scholar 

  • Manton S M 1977The arthropods: habits, functional morphology and evolution (London, New York: Oxford University Press)

    Google Scholar 

  • Mariappan P and Balasundaram C 1999a Molt related limb loss inMacrobrachium nobilii;Curr. Sci. 75 637–639

    Google Scholar 

  • Mariappan P and Balasundaram C 1999b Prevalence of autotomy in field populations ofMacrobrachium nobilii;Indian J. Fish. 46 61–66

    Google Scholar 

  • Mariappan P and Balasundaram C 1997 Cheliped laterality in the freshwater prawnMacrobrachium nobilii (Henderson and Matthai 1910);Curr. Sci. 73 875–877

    Google Scholar 

  • McLaughlin P A 1982 Comparative morphology of crustacean appendages; inThe biology of crustacea (ed.) D E Bliss (New York: Academic Press) vol 2, pp 197–256

    Google Scholar 

  • McVean A 1976 The incidence of autotomy inCarcinus maenas (L.);J. Exp. Mar. Biol. Ecol. 24 177–187

    Google Scholar 

  • McVean A 1982 Autotomy; inThe biology of crustacea (ed.) D E Bliss (New York: Academic Press) vol 4, pp 107–132

    Google Scholar 

  • McVean A and Findlay I 1979 The incidence of autotomy in an estuarine population of the crabCarcinus maenas (L.);J. Mar. Biol. Assoc. U.K. 59 341–354

    Google Scholar 

  • Mellon De F Jr 1981 Nerves and the transformation of claw type in snapping shrimps;Trends Neurosci. 4 245–248

    Google Scholar 

  • Mellon De F Jr and Stephens P J 1980 Modifications in the arrangement of thick and thin filaments in transformed shrimp muscle;J. Exp. Zool. 213 173–179

    Google Scholar 

  • Moriyasu M, Landsburg W, Wade E and Maynard D R 1999 The role of an estuary environment for regeneration of claws in the American lobster,Homarus americanus H. Milne Edwards, 1837 (Decapoda);Crustaceana 72 417–433

    Google Scholar 

  • Morris J A 1948 Studies on the host-parasite relationship ofProbopyrus pandalicola (Packard);Cathol. Univ. Am. Biol. Stud. 8 1–20

    Google Scholar 

  • Motoh H 1971 Abnormalities found in the left cheliped of Japanese edible crab,Chionectes japonicus Rathbun;Res. Crust. 4-5 184–190

    Google Scholar 

  • Muino R, Fernandez L, Gonzalez-Gurraiaran E, Freire J and Vilar J A 1999 Size at maturity ofLiocarcinus depurator (Brachyura: Portunidae): a reproductive and morphometric study;J. Mar. Biol. Assoc. U.K. 79 295–303

    Google Scholar 

  • Murayama O, Nakatani I and Nishita M 1994 Induction of lateral outgrowths on the chelae of the crayfish,Procambarus clarkii (Girard);Crust. Res. 23 69–73

    Google Scholar 

  • Mykles D L and Skinner D M 1981 Preferential loss of thin filaments during molt-induced atrophy in crab claw muscle;J. Ultrastruct. Res. 75 314–325

    PubMed  CAS  Google Scholar 

  • Nagamine C M and Knight A W 1980 Development, maturation, and function of some sexually dimorphic structures of the Malaysian prawn,Macrobrachium rosenbergii (De Man) (Decapoda, Palaemonidae);Crustaceana 39 141–152

    Google Scholar 

  • Nakatani I and Kitahara 1999 Induction of outgrowths at wounds on the cheliped ofProcambarus clarkii (Decapoda, Cambaridae);J. Crust. Biol. 19 1–7

    Google Scholar 

  • Nakatani I, Okada Y and Yamaguchi T 1997 An extra claw on the first and on the third cheliped of the crayfish,Procambarus clarkii (Decapoda, Cambaridae);Crustaceana 70 788–798

    Google Scholar 

  • Nakatani I, Yamaguchi T and Murayama O 1992 Abnormalities found in the chela of the crayfish,Procambarus clarkii (Girard);Res. Crust. 21 207–209

    Google Scholar 

  • NgP K L and Tan L W H 1985 ‘Right handedness’ in the heterochelous calappoid and xanthoid crabs — suggestion for functional advantage;Crustaceana 49 98–100

    Google Scholar 

  • Niwa K and Kurata H 1964 Limb loss and regeneration in the adult king crabParalithodes camtschatica;Bull. Hokkaido Reg. Fish. Res. Lab. 28 51–55 (Transl. from Japanese by Fish. Res. Board Can. Transl. Ser. No. 1190, 1969)

    Google Scholar 

  • Nolan B A and Salmon M 1970 The behavior and ecology of snapping shrimp (Crustacea:Alpheus heterochaelis andAlpheus normanni);Forma Functio 2 289–335

    Google Scholar 

  • Norman C P 1995 Limb loss in the poisonous crabAtergatis floridus (Linnaeus) advantages of possessing toxins?;Crust. Res. 24 137–145

    Google Scholar 

  • Norman C P and Jones M B 1991 Limb loss and its effect on handedness and growth in the velvet swimming crabNecora puber (Brachyura: Portunidae);J. Natl. Hist. 25 639–645

    Google Scholar 

  • Norman C P and Jones M B 1993 Reproduction ecology of the velvet swimming crab,Necora puber (Brachyura: Portunidae), at Plymouth;J. Mar. Biol. Assoc. U.K. 73 379–389

    Article  Google Scholar 

  • Ogonowski M M and Lang F 1979 Histochemical evidence for enzyme differences in crustacean fast and slow muscle;J. Exp. Zool. 207 143–151

    CAS  Google Scholar 

  • Ogonowski M M, Lang F and C K Govind 1980 Histochemistry of lobster claw-closer muscles during development;J. Exp. Zool. 213 359–367

    CAS  Google Scholar 

  • O'Neill D J and Cobb J S 1979 Some factors influencing the outcome of shelter competition in lobsters (Homarus americanus);Mar. Behav. Physiol. 6 33–45

    Google Scholar 

  • Okamoto K 1991 Abnormality found in the cheliped ofGeryon affinis granulatus Sakai;Res. Crust. 20 63–65

    Google Scholar 

  • Paulian R 1936 L'existence d'un stade critique dans la croissance relative de l'Eupagurus prideauxi (Crustacée anomoure);C.R. Seances Soc. Biol. Ses Fil. 121 435–437

    Google Scholar 

  • Peebles J B 1979 The role of prior residence and relative size in competition for shelter by the Malaysian prawnMacrobrachium rosenbergii;Fish. Bull. 76 905–911

    Google Scholar 

  • Pillai G 1990 Notes on the chelae of the mangrove lobsterThalassina anomala (Decapoda, Thalassinidae);Crustaceana 59 89–95

    Google Scholar 

  • Pinheiro M A A and Fransozo A 1993 Relative growth of the speckled swimming crabArenaeus cribrarius (Lamarck, 1818) (Brachyura, Portunidae), near Ubatuba, State of Sao Paulo, Brazil;Crustaceana 65 377–389

    Google Scholar 

  • Pinheiro M A A and Fransozo A 1998 Sexual maturity of the speckled swimming crabArenaeus cribrarius (Lamarck, 1818) (Decapoda, Brachyura, Portunidae), in the Ubatuba littoral, Sao Paulo State, Brazil;Crustaceana 71 434–452

    Google Scholar 

  • Powell M L, Hammer H S and Watts S A 1998 Observations on the frequency of claw loss in the crayfishProcambarus clarkii;J. World Maricult. Soc. 29 485–490

    Google Scholar 

  • Przibram H 1901 Experimentelle studien uber regeneration;Arch. Ent. Mech. Org. 11 321–345

    Google Scholar 

  • Quigley M M and Mellon De F Jr 1984 Changes in myofibrillar gene expression during fibre-type transformation in the claw closer muscles of the snapping shrimpAlpheus heterochelis;Dev. Biol. 106 262–265

    PubMed  CAS  Google Scholar 

  • Ra'anan Z and Cohen D 1985 The ontogeny of social structure and population dynamics in the freshwater prawn,Macrobrachium rosenbergii (de Man); inCrustacean issues II. Crustacean growth (eds) F M Schram and A Wenner (Rotterdam: Balkema) pp 271–311

    Google Scholar 

  • Ra'anan Z and Sagi A 1985 Alternative mating strategies in male morphotypes of the freshwater prawnMacrobrachium rosenbergii (de Man);Biol. Bull. 169 592–601

    Google Scholar 

  • Read A T and Govind C K 1997 Regeneration and sex-biased transformation of the sexually dimorphic pincer claw in adult snapping shrimps;J. Exp. Zool. 279 356–366

    Google Scholar 

  • Reverberi G 1943 Sul significato della “castrazione parassi-Taria”. La trasformazione del sesso nei Crostacei parassiti da Bopiridi e da Rizocefali;Pubbl. Stn. Zool. Napoli 19 225–316

    Google Scholar 

  • Robinson M H, Abele L G and Robinson B 1970 Attack autotomy: A defense against predators;Science 169 300–301

    PubMed  CAS  Google Scholar 

  • Sagi A 1984Alternative reproduction strategies in male population of the freshwater prawn Macrobrachium rosenbergii M.Sc. Thesis, Hebrew University, Jerusalem

    Google Scholar 

  • Salmon M and Hyatt G W 1983 Communication; inThe biology of crustacea (ed.) D E Bliss (New York: Academic Press) vol. 7, pp 1–40

    Google Scholar 

  • Salmon M, Hyatt G, McCarthy K and Costlow J D Jr 1978 Display specificity and reproductive isolation in the fiddler crabsUca panaceaand U. pugilator.Z. Tierpsychol. 48 251–276

    Google Scholar 

  • Savage T and Sullivan J R 1978 Growth and claw regeneration of the stone crab,Menippe mercenaria;Florida Mar. Res. Publ. 32 1–23

    Google Scholar 

  • Schmalbach E A, Harpaz S, Kahan D, Galun R and Frankenberg E 1984 Periodic cheliped autotomy of the males of the Malaysian prawnMacrobrachium rosenbergii;Naturwissenschaften 71 325–326

    Google Scholar 

  • Schmitt W L 1965Crustaceans (Ann Arbor: University of Michigan Press)

    Google Scholar 

  • Schmitz B 2000 Sound production in Crustacea with special reference to the Alpheidae; inPhysiology of the Crustacean nervous system (ed.) K Wiese (Springer-Verlag) (in press)

  • Schram F R 1978 Arthropods: A convergent phenomenon;Fieldiana 39 61–108

    Google Scholar 

  • Schultz S, Wuppermann K and Schmitz B 1998 Behavioural interactions of the snapping shrimp (Alpheus heterochaelis) with conspecifics and sympatric crabs (Eurypanopeus depressus);Zool. Anal. Complex Syst. (Suppl I) 101 85

    Google Scholar 

  • Schuster S M and Caldwell R L 1989 Male defense of the breeding cavity and factors affecting the persistence of breeding pairs in the stomatopod,Gonodactylus bredini (Manning) (Crustacea: Hoplocarida);Ethology 82 192–207

    Article  Google Scholar 

  • Seed R and Hughes R N 1995 Criteria for prey size-selection in molluscivorous crabs with contrasting claw morphologies;J. Exp. Mar. Biol. Ecol. 193 177–195

    Google Scholar 

  • Sekkelsten G I 1988 Effect of handicap on mating success in male shore crabsCarcinus maenas;Oikos 51 131–134

    Google Scholar 

  • Sexton E W and Reid DM 1951 The life history of the multiform speciesJassa falcata (Montagu) (Crustacea, Amphipoda) with a review of the bibliography of the species;J. Linn. Soc. London Zool. 57 29–88

    Google Scholar 

  • Shelton P M J, Truby P R and Shelton R G J 1981 Naturally occurring abnormalities (Bruchdreifachbildungen) in the chelae of three species of Crustacea (Decapoda) and a possible explanation;J. Embryol. Exp. Morphol. 63 285–304

    PubMed  CAS  Google Scholar 

  • Shih H-T, Mok H-K, Chang H-W and Lee S-C 1999 Morphology ofUca formosensis, 1921 (Crustacea: Decapoda: Ocypodidae), an endemic fiddler crab from Taiwan, with notes on its ecology;Zool. Stud. 38 164–177

    Google Scholar 

  • Shirley S M and Shirley T C 1988 Appendage injury in dungeness crabs,Cancer magister, in Southeastern Alaska;Fish. Bull. 86 156–160

    Google Scholar 

  • Simonson J L and Steele P 1981 Cheliped asymmetry in the stone crab,Menippe mercenaria, with notes on claw reversal and regeneration;Northeast Gulf Sci. 5 21–30

    Google Scholar 

  • Skinner D M 1966 Breakdown and reformation of somatic muscle during the molt cycle of land crab,Gecarcinus lateralis;J. Exp. Zool. 163 115–124

    PubMed  CAS  Google Scholar 

  • Skinner D M 1985 Molting and regeneration; inThe biology of crustacea (eds) D E Bliss and T H Mantel (New York: Academic Press) vol 9, pp 43–143

    Google Scholar 

  • Smith L D 1990aThe frequency and ecological consequences of limb autotomy in the blue crab, Callinectes sapidus Rathbun, Ph D thesis, University of Maryland, Maryland, USA

    Google Scholar 

  • Smith, L D 1990b Patterns of limb loss in the blue crab,Callinectes sapidus Rathbun, and the effects of autotomy on growth;Bull. Mar. Sci. 46 23–36

    Google Scholar 

  • Smith L D 1995 Effects of limb autotomy and tethering on juvenile blue crab survival from cannibalism;Mar. Ecol. Prog. Ser. 116 65–74

    Google Scholar 

  • Smith L D and Hines AH 1991 The effect of cheliped loss on blue crabCallinectes sapidus Rathbun foraging rate on softshell clamsMya arenariaL.;J. Exp. Mar. Biol. Ecol. 151 245–256

    Google Scholar 

  • Smith L D and Palmer A R 1994 Effects of manipulated diet on size and performance of brachyuran crab claws;Science 264 710–712

    Google Scholar 

  • Snedden W A 1990 Determinants of male mating success in the temperate crayfishOrconectes rusticus: chela size and sperm competition;Behaviour 115 100–113

    Google Scholar 

  • Spivak E D 1990 Limb regeneration a common South American littoral crabCyrtograpsus angulatus;J. Natl. Hist. 24 393–402

    Google Scholar 

  • Spivak E D and Politis M A 1989 High incidence of limb autotomy in crab population from a coastal lagoon in the province of Buenos Aires, Argentina;Can. J. Zool. 67 1976–1985

    Google Scholar 

  • Stebbing T R R 1893A history of Crustacea recent malacostraca (London: Kegan Paul, Trench, Treubner and Co Ltd.)

    Google Scholar 

  • Stein R A 1976 Sexual dimorphism in crayfish chelae: functional significance linked to reproductive activities;Can. J. Zool. 54 220–227

    Google Scholar 

  • Stephens P J and Mellon De F Jr 1979 Modification of structure and synaptic physiology in transformed shrimp muscle;J. Comp. Physiol. 132 97–108

    Google Scholar 

  • Stevens B G, Donaldson W E, Haaga J A and Munk JE 1993 Morphometry and maturity of paired Tanner crabs,Chionoecetes bairdi, from shallow and deepwater environments;Can. J. Fish. Aquat. Sci. 50 1504–1516

    Google Scholar 

  • Suzuki H 1963 An abnormality found in the cheliped ofMacropthalmus japonicusDe Haan;Res. Crust. 1 51–53

    Google Scholar 

  • Swartz R C 1972Postlarval growth and reproduction in the painted ghost crab Neopanope texana sayi, Ph D thesis, College of William and Mary,

  • Tiegs O W and Manton S M 1958 The evolution of the Arthropoda;Biol. Rev. 33 255–337

    Google Scholar 

  • Trott T J 1987 The prevalence of left-handedness in the painted ghost crabOcypode gaudichaudii H. Milne Edwards and Lucas (Decapoda, Brachyura, Ocypodidae);Crustaceana 52 213–215

    Article  Google Scholar 

  • Tucker B W 1930 On the effects of an epicaridan parasite,Gyge branchialis, onUpogebia littoralis;Q. J. Microsc. Sci. (N.S.) 74 1–118

    Google Scholar 

  • Tweedie M W F 1950 The fauna of the Cocos-Keeling Islands, Brachyura and Stomatopoda;Bull. Raffles Mus. 22 105–148

    Google Scholar 

  • Vermeij G J 1977 Patterns in claw size: the geography of crushing;Syst. Zool. 26 138–151

    Google Scholar 

  • Warner G F and Jones A R 1976 Leverage and muscle type in crab chelae (Crustacea: Brachyura);J. Zool. 180 57–68

    Article  Google Scholar 

  • Wilson E B 1903 Notes on the reversal of asymmetry in the regeneration of chelae inAlpheus heterochelis;Biol. Bull. 4 197–210

    Google Scholar 

  • Wood F D and Wood W H 1932 Autotomy in decapod Crustacea;J. Exp. Zool. 62 1–55

    Google Scholar 

  • Yamaguchi T 1973 Asymmetry and dimorphism of chelipeds in the fiddler crab,Uca lactea De Haan;Zool. Mag. 82 154–158

    Google Scholar 

  • Yamaguchi T 1977 Studies on the handedness of the fiddler crab,Uca lactea;Biol. Bull. 152 424–436

    Google Scholar 

  • Yamaguchi T and Aratake H 1997 Morphological modifications caused bySacculina polygenea inHemigrapsus sanguineus (De Haan) (Brachyura: Grapsidae);Crust. Res. 26 125–145

    Google Scholar 

  • Young R E, Pearce J and Govind C K 1994 Establishment and maintenance of claw bilateral asymmetry in snapping shrimps;J. Exp. Zool. 269 319–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariappan, P., Balasundaram, C. & Schmitz, B. Decapod crustacean chelipeds: an overview. J Biosci 25, 301–313 (2000). https://doi.org/10.1007/BF02703939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703939

Keywords

Navigation