Advertisement

Journal of Biosciences

, Volume 25, Issue 3, pp 221–228 | Cite as

Daniel Bernoulli (1738): evolution and economics under risk

  • Stephen C. Stearns
Perspectives

Conclusion

In this 300th anniversary of Daniel Bernoulli's birth, this essay traces the influence of one of his works usually regarded by mathematicians and physicists as too minor to mention. From this source has flowed much of our understanding of how to deal with risk in economics and evolution. The concepts introduced by Bernoulli help us to think about the evolution of reproductive lifespan, dormancy and diapause, sexual versus asexual reproduction, and population dynamics. In economics they form the foundation of portfolio and insurance theory. The 1738 paper was definitely not minor.

Keywords

Reproductive Success Lyapunov Exponent Reproductive Effort Asexual Reproduction Negative Covariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernoulli D 1954 Exposition of a new theory on the measurement of risk;Econometrica 22 23–36 (Translation of Bernoulli D 1738 Specimen theoriae novae de mensura sortis;Papers Imp. Acad. Sci. St. Petersburg 5 175–192)CrossRefGoogle Scholar
  2. Brieman L 1960 Investment policies for expanding business optimal in a long-term sense;Nav. Res. Logistics Q. 7 647–651CrossRefGoogle Scholar
  3. Bulmer M G 1985 Selection for iteroparity in a variable environment;Am. Nat. 126 63–71CrossRefGoogle Scholar
  4. Cohen D 1966 Optimizing reproduction in a randomly varying environment;J. Theor. Biol. 12 119–129PubMedCrossRefGoogle Scholar
  5. Cohen D 1968 A general model of optimal reproduction in a randomly varying environment;J. Ecol. 56 219–228CrossRefGoogle Scholar
  6. Dempster E 1955 Maintenance of genetic heterogeneity;Cold Spring Harbor Symp. Quant. Biol. 20 25–32PubMedGoogle Scholar
  7. Dieckmann U 1997 Can adaptive dynamics invade?;Trends Ecol. Evol. 12 128–131CrossRefGoogle Scholar
  8. Doebeli M 1998 Invasion of rare mutants does not imply their evolutionary success: a counterexample from metapopulation theory;J. Evol. Biol. 11 389–401CrossRefGoogle Scholar
  9. Doebeli M and Koella J 1994 Sex and population dynamics;Proc. R. Soc. London B257 17–23CrossRefGoogle Scholar
  10. Ekbohm G, Fagerström T and 228-01 G 1980 Natural selection for variation in offspring numbers: comments on a paper by J H Gillespie;Am. Nat. 115 445–447CrossRefGoogle Scholar
  11. Ellner S 1989 Convergence to stationary distributions in two-species stochastic competition models;J. Math. Biol. 27 451–462PubMedCrossRefGoogle Scholar
  12. Ferriére R and Gatto M 1995 Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations;Theor. Popul. Biol. 48 126–171CrossRefGoogle Scholar
  13. Frank S A and Slatkin M 1990 Evolution in a variable environment;Am. Nat. 136 244–260CrossRefGoogle Scholar
  14. Gillespie J H 1974 Natural selection for within-generation variance in offspring numbers;Genetics 76 601–606PubMedGoogle Scholar
  15. Haldane J B S and Jayakar S D 1963 Polymorphism due to selection of varying direction;J. Genet. 58 237–242CrossRefGoogle Scholar
  16. Halder O 1889 Ueber einen Mittelwertsatz;richten 38–47Google Scholar
  17. Jensen J L 1906 Sur les fonctions convexes et les inégalités entre les valeurs moyennes;Acta Math. 30 175–193CrossRefGoogle Scholar
  18. Lacey E P, Real L A, Antonovics J and Heckel D G 1983 Variance models in the study of life histories;Am. Nat. 122 114–131CrossRefGoogle Scholar
  19. Leonard J L 1999 Modern portfolio theory and the prudent hermaphrodite;Invert. Reprod. Dev. 36 129–135Google Scholar
  20. Levins R 1967Evolution in changing environments (Princeton: Princeton University Press)Google Scholar
  21. Lewontin R and Cohen D 1969 On population growth in a randomly varying environment;Proc. Natl. Acad. Sci. USA 62 1056–1060PubMedCrossRefGoogle Scholar
  22. Markowitz H 1952 Portfolio selection;J. Finance 7 77–91CrossRefGoogle Scholar
  23. Merian P 1860 Die mathematicker Bernoulli. Jubelschrift zur vierten säculärfier der Universität Basel;Schweighauser'sche-Buchdruckerei, Basel, p 61Google Scholar
  24. Real L A 1980 Fitness uncertainty and the role of diversification in evolution and behavior;Am. Nat. 115 623–638CrossRefGoogle Scholar
  25. Real L A and Ellner S 1992 Life history evolution in stochastic environments: a graphical mean-variance approach;Ecology 73 1227–1236CrossRefGoogle Scholar
  26. Robson A J, Bergstrom C T and Pritchard J K 1999 Risky business: sexual and asexual reproduction in variable environments;J. Theor. Biol. 197 541–556PubMedCrossRefGoogle Scholar
  27. Ruel J J and Ayres M P 1999 Jensen's inequality predicts effects of environmental variation;Trends Ecol. Evol. 14 361–366PubMedCrossRefGoogle Scholar
  28. Samuelson P 1971 The “fallacy” of maximizing the geometric mean in long sequences of investing or gambling;Proc. Natl. Acad. Sci. USA 68 2493–2496PubMedCrossRefGoogle Scholar
  29. Sasaki A and Ellner S 1995 The evolutionarily stable phenotype distribution in a random environment;Evolution 49 337–350CrossRefGoogle Scholar
  30. Schaffer W M 1974 Optimal reproductive effort in fluctuating environments;Am Nat 108 783–790CrossRefGoogle Scholar
  31. Speiser A 1939Die Basler Mathematiker. 117.Neujahrsblatt Gesellschaft zur Beförderung des Guten und Gemeinnützigen (Basel: Helbing and Lichtenhahn) pp 51Google Scholar
  32. Stephens D and Krebs J 1986 Foraging theory (Princeton: Princeton University Press)Google Scholar
  33. Stuart A and Ord J K 1994Kendall's advanced theory of statistics, Vol. 1.Distribution theory (New York: John Wiley and Sons)Google Scholar
  34. Tobin J 1958 Liquidity preference as behavior toward risk;Rev. Economic Stud. 25 65–86CrossRefGoogle Scholar
  35. Young W E and Trent R H 1969 Geometric mean approximation of individual security and portfolio performance;J. Finan. Quant. Anal. 4 179–199CrossRefGoogle Scholar
  36. Yule G U and Kendall M G 1950Introduction to the theory of statistics (London: Charles Griffin)Google Scholar

Copyright information

© Indian Academy of Sciences 2000

Authors and Affiliations

  • Stephen C. Stearns
    • 1
  1. 1.University of BaselZoology InstituteBaselSwitzerland

Personalised recommendations