Journal of Biosciences

, Volume 31, Issue 2, pp 255–263 | Cite as

Overexpression ofGbERF confers alteration of ethylene-responsive gene expression and enhanced resistance toPseudomonas syringae in transgenic tobacco

  • Jie Qin
  • Kaijing Zuo
  • Jingya Zhao
  • Hua Ling
  • Youfang Cao
  • Chengxiang Qiu
  • Fupeng Li
  • Xiaofen Sun
  • Kexuan Tang
Article

Abstract

GbERF belongs to the ERF (ethylene responsive factor) family of transcription factors and regulates the GCC-box containing pathogen-related (PR) genes in the ethylene signal transduction pathway. To study the function of GbERF in the process of biotic stress, transgenic tobacco plants expressingGbERF were generated. Overexpression ofGbERF did not change transgenic plant’s phenotype and endogenous ethylene level. However, the expression profile of some ethylene-inducible GCC-box and non-GCC-box containing genes was altered, such asPR1b, PR2, PR3, PR4,Osmotin, CHN50, ACC oxidase and ACC synthase genes. These data indicate that the cotton GbERF could act as a transcriptional activator or repressor to regulate the differential expression of ethylene-inducible genes via GCC and non-GCCcis-elements. Moreover, the constitutive expression ofGbERF in transgenic tobacco enhanced the plant’s resistance toPseudomonas syringae pvtabaci infection. In conclusion,GbERF mediates the expression of a wide array ofPR and ethylene-responsive genes and plays an important role in the plant’s response to biotic stress.

Keywords

Constitutive expression GbERF Nicotiana tabacum Pseudomonas syringae transgenic plant 

Abbreviations Used

ABA

Abscisic acid

ACC

1-aminocyclopropane carboxylic aicd

ACO

ACC oxidase

ACS

ACC synthase

ERF

ethylene responsive factor

PCR

polymerase chain reaction

RT

reverse transcription

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M and Suzuki M 1998 A novel mode of DNA recognition by a Β-sheet revealed by the solution structure of the binding domain in complex with DNA;EMBO J. 17 5485–5496CrossRefGoogle Scholar
  2. Berrocal-Lobo M, Molina A and Solano R 2002 Constitutive expression of Ethylene Response Factor1 inArabidopsis confers resistance to several necrotrophic fungi;Plant J. 29 23–32PubMedCrossRefGoogle Scholar
  3. Chakravarthy S, Robert P, D’Ascenzo M D, Fobert P R, Després C and Martin G B 2003 The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC boxcis elements;Plant Cell 15 3033–3050PubMedCrossRefGoogle Scholar
  4. Cao Y, Song F, Goodman R M and Zheng Z 2006 Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress;J. Plant Physiol. (in press)Google Scholar
  5. Fischer U and Dröge-Laser W 2004 Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus;Mol. Plant-Microbe Interact. 17 1162–1171PubMedCrossRefGoogle Scholar
  6. Fujimoto S Y, Ohta M, Usui A, Shinshi H and Ohme-Takagi M 2000Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression;Plant Cell 12 393–404PubMedCrossRefGoogle Scholar
  7. Gu Y Q, Yang C M, Thara V K, Zhou J M and Martin G B 2000 Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase;Plant Cell 12 771–786PubMedCrossRefGoogle Scholar
  8. Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C, He X, Han Y and Martin G B 2002 Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed inArabidopsis;Plant Cell 14 817–831PubMedCrossRefGoogle Scholar
  9. Guang V Z and Jacqueline K B 2003 Profiling ethylene-regulated gene expression inArabidopsis thaliana by microarray analysis;Plant Mol. Biol. 53 117–131CrossRefGoogle Scholar
  10. He P, Warren R F, Zhao T, Shan L, Zhu L, Tang X and Zhou J M 2001 Overexpression of Pti5 in tomato potentiates pathogeninduced denfense gene and enhances disease resistance toPseudomonas syringae pv.Tomato;Mol. Plant-Microbe Interact. 14 1453–1457PubMedCrossRefGoogle Scholar
  11. Hoekema A, Hirsch P, Hooykaas P and Schilperoort R 1983 A binary plant vector strategy based on separation of vir and T-region of theAgrobacterium tumefaciens Ti-plasmid;Nature (London) 303 179–180CrossRefGoogle Scholar
  12. Huang Z J, Zhang Z J, Zhang X L, Zhang H B, Huang D F and Huang R F 2004 Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes;FEBS Lett. 573 110–116PubMedCrossRefGoogle Scholar
  13. Jia Y and Martin G B 1999 Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants;Plant Mol. Biol. 40 455–465PubMedCrossRefGoogle Scholar
  14. Kende H 1993 Ethylene biosynthesis;Annu. Rev. Plant Physiol. Plant Mol. Biol. 44 283–307CrossRefGoogle Scholar
  15. Kizis D, Lumvreras V and Pages M 2001 Role of AP2/EREBP transcription factors in gene regulation during abiotic stress;FEBS Lett. 498 187–189PubMedCrossRefGoogle Scholar
  16. Kumar V and Spencer M E 1992 Nucleotide sequence of an osmotin cDNA from theNicotiana tabacum cv. white burley generated by the polymerase chain reaction;Plant Mol. Biol. 18 621–622PubMedCrossRefGoogle Scholar
  17. Linthorst H J, van Loon L C, van Rossum C M, Mayer A, Bol J F, van Roekel J S, Meulenhoff E J and Cornelissen B J 1990 Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco;Mol. Plant-Microbe Interact. 3 252–258PubMedGoogle Scholar
  18. Linthorst H J, Danhash N, Brederode F T, van Kan J A, de Wit P J and Bol F 1991 Tobacco and tomato PR proteins homologous to win and pro-hevein lack the ‘hevein’ domain;Mol. Plant-Microbe Interact. 4 586–592PubMedGoogle Scholar
  19. Liu J Z, Li N, Yang S E and Kung S D 1998 Full-length nucleotide sequence of the tobacco cultivar SR1 encoding 1-aminocyclopropane-1-carboxylate synthase;Plant Physiol. 118 1534Google Scholar
  20. Martin G B, Brommonschenkel S H, Chunwongse J, Frary J, Ganal A, Spivey M W, Wu R, Earle T and Tanksley S D 1993 Map-based cloning of a protein kinase gene conferring disease resistance in tomato;Science 262 1432–1436PubMedCrossRefGoogle Scholar
  21. Matsuoka M, Yamamoto N, Kano-Murakami Y, Tanaka Y, Ozeki Y, Hirano H, Kagawa H, Oshima M and Ohashi Y 1987 Classification and structural comparison of full-length cDNAs for pathogenesis-related proteins;Plant Physiol. 85 942–946PubMedCrossRefGoogle Scholar
  22. Melchers L S, Apothekerde G M, van der Knaap J A, Ponstein A S, Sela-Buurlage M B, Bol J F, Cornelissen B J, van den Elzen P J and Linthorst H J 1994 A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity;Plant J. 5 469–480PubMedGoogle Scholar
  23. Ohme-Takagi M and Shinshi H 1995 Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element;Plant Cell 7 173–182PubMedCrossRefGoogle Scholar
  24. Ohta M, Ohme-Takagi M and Shinshi H 2000 Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions;Plant J. 22 29–38PubMedCrossRefGoogle Scholar
  25. Park J M, Park C J, Lee S B, Ham B K, Shin R and Paek K H 2001 Overexpression of the tobaccoTsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco;Plant Cell 13 1035–1046PubMedCrossRefGoogle Scholar
  26. Qin J, Zhao J Y, Zuo K J, Cao Y F, Ling H, Sun X F and Tang K X 2004 Isolation and characterization of an ERF-like gene fromGossypium barbadense;Plant Sci. 167 1383–1389CrossRefGoogle Scholar
  27. Reichmann J L and Meyerowitz E M 1998 The AP2/EREBP family of plant transcription factors;Biol. Chem. 379 633–664CrossRefGoogle Scholar
  28. Reichmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D and Sherman B K 2000Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes;Science 290 2105–2110CrossRefGoogle Scholar
  29. Sambrook J, Fritsch E F and Maniatis T 1989Molecular cloning: A laboratory manual, 2nd edition (New York: Cold-Spring Harbor Laboratory Press)Google Scholar
  30. Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C and Manners J M 2000 Coordinated plant defense responses inArabidopsis revealed by microarray analysis;Proc. Natl. Acad. Sci. USA 97 11655–11660PubMedCrossRefGoogle Scholar
  31. Shinshi H, Neuhas J M, Ryals J and Meins F 1990 Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain;Plant Mol. Biol. 14 357–368PubMedCrossRefGoogle Scholar
  32. Tang W, Charles T M and Newton R J 2005 Overexpression of the pepper transcription factorCaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth;Plant Mol. Biol. 59 603–617PubMedCrossRefGoogle Scholar
  33. Wang K L C, Li H and Ecker J R 2002 Ethylene biosynthesis and signaling networks;Plant Cell 14 S131-S151PubMedGoogle Scholar
  34. Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D and Huang R 2004 Ectopic overexpression of tomatoJERF3 in tobacco activates downstream gene expression and enhances salt tolerance;Plant Mol. Biol. 55 183–192PubMedCrossRefGoogle Scholar
  35. Ward E R, Uknes S J, Williams S C, Dincher S S, Wiederhold D L, Alexander D C, Ahl-Goy P, Métraux J P and Ryals J A 1991 Coordinate gene activity in response to agents that induce systemic acquired resistance;Plant Cell 3 1085–1094PubMedCrossRefGoogle Scholar
  36. Wu K Q, Tian L N, Hollingworth J, Brown D C W and Miki B 2002 Functional analysis of tomato Pti4 inArabidopsis;Plant Physiol. 128 30–37PubMedCrossRefGoogle Scholar
  37. Zhou J, Tang X and Martin G B 1997 The Pto kinase conferring resistance to tomato bacterial speck disease with proteins that bind a cis-element of pathogenesis-related genes;EMBO J. 16 3207–3218PubMedCrossRefGoogle Scholar
  38. Zuo K J, Wang J, Wu W S, Chai Y R, Sun X F and Tang K X 2005 Isolation and characterization differentially expressed ESTs from sea-island cotton (Gossypium barbadense L.) infected withVerticillium pathogens;Mol. Biol. 39 214–223CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • Jie Qin
    • 1
  • Kaijing Zuo
    • 1
  • Jingya Zhao
    • 1
  • Hua Ling
    • 1
  • Youfang Cao
    • 1
  • Chengxiang Qiu
    • 1
  • Fupeng Li
    • 1
  • Xiaofen Sun
    • 2
  • Kexuan Tang
    • 1
    • 2
  1. 1.Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D CenterMorgan-Tan International Center for Life Sciences, Fudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations