Skip to main content
Log in

A novel potassium deficiency-induced stimulon inAnabaena torulosa

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Potassium deficiency enhanced the synthesis of fifteen proteins in the nitrogen-fixing cyanobacteriumAnabaena torulosa and of nine proteins inEscherichia coli. These were termed potassium deficiency-induced proteins or PDPs and constitute hitherto unknown potassium deficiency-induced stimulons. Potassium deficiency also enhanced the synthesis of certain osmotic stress-induced proteins. Addition of K+ repressed the synthesis of a majority of the osmotic stress-induced proteins and of PDPs in these bacteria. These proteins contrast with the dinitrogenase reductase ofA. torulosa and the glycine betaine-binding protein ofE. coli, both of which were osmo-induced to a higher level in potassium-supplemented conditions. The data demonstrate the occurrence of novel potassium deficiency-induced stimulons and a wider role of K+ in regulation of gene expression and stress responses in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GBBP:

Glycine betaine-binding protein

ISPs:

ionic stress-induced proteins

KdpATPase:

K+-dependent AT-Pase

OSPs:

osmotic stress-induced proteins

PDI:

potassium deficiency-induced

PDPs:

potassium deficiency-induced proteins

References

  • Alahari A and Apte S K 1998 Pleiotropic effects of potassium deficiency in a heterocystous, nitrogen-fixing cyanobacterium,Anabaena torulosa;Microbiology 144 1557–1563

    Article  CAS  Google Scholar 

  • Apte S K and Alahari A 1994 Role of alkali cations (K+ and Na+) in cyanobacterial nitrogen fixation and adaptation to salinity and osmotic stress;Indian J. Biochem. Biophys. 31 267–279

    CAS  PubMed  Google Scholar 

  • Alahari A, Ballal A and Apte S K 2001 Regulation of potassium-dependent Kdp-ATPase expression in the nitrogen-fixing cyanobacteriumAnabaena torulosa;J. Bacteriol. 183 5778–5781

    Article  CAS  Google Scholar 

  • Apte S K and Bhagwat A A 1989 Salinity stress-induced proteins in two nitrogen-fixingAnabaena strains differentially tolerant to salt;J. Bacteriol. 171 909–915

    Article  CAS  Google Scholar 

  • Apte S K, Reddy B R and Thomas J 1987 Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteriumAnabaena torulosa;Appl. Environ. Microbiol. 53 1934–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballal A, Heermann R, Jung K, Gassel M, Apte S K and Altendorf K 2002 A chimericAnabaena/Escherichia coli KdpD protein (Anacoli KdpD) functionally interacts withEscherichia coli KdpE and activateskdp expression inE. coli;Arch. Microbiol. 178 141–148

    Article  CAS  Google Scholar 

  • Booth I R 1985 Regulation of cytoplasmic pH in bacteria;Microbiol. Rev. 49 359–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castenholz R W 1988 Culturing methods for cyanobacteria;Methods Enzymol. 167 68–93

    Article  CAS  Google Scholar 

  • Csonka L N and Hanson A D 1991 Prokaryotic osmoregulation: genetics and physiology;Annu. Rev. Microbiol. 45 569–606

    Article  CAS  Google Scholar 

  • Dattananda A. S, Rajkumari K and Gowrishankar J 1991 Multiple mechanisms contribute to osmotic inducibility ofpro U operon expression inEscherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene;J. Bacteriol. 173 7481–7490

    Article  CAS  Google Scholar 

  • Dinnbier U, Limpinsel E, Schmid R and Bakker E P 1988 Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells ofEscherichia coli K-12 to elevated sodium chloride concentrations;Arch. Microbiol. 150 348–357

    Article  CAS  Google Scholar 

  • Ennis H L and Lubin M 1965 Preribosomal particles formed in potassium-depleted cells;Biochim. Biophys. Acta 95 605–623

    Article  CAS  Google Scholar 

  • Epstein W 1986 Osmoregulation of potassium transport inEscherichia coli;FEMS Microbiol. Rev. 39 73–78

    Article  CAS  Google Scholar 

  • Epstein W and Davis M 1970 Potassium-dependent mutants ofEscherichia coli;J. Bacteriol. 101 836–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feifel B, Sandmeier E, Schonfeld H J and Christen P 1996 Potassium ions and the molecular-chaperone activity of DnaK;Eur. J. Biochem. 237 318–321

    Article  CAS  Google Scholar 

  • Fernandes T and Apte S K 2000 Differential regulation of nitrogenase activity by salinity and osmotic stresses and permeable sugars in the cyanobacteriumAnabaena sp. strain L-31;Plant Sci. 150 181–189

    Article  CAS  Google Scholar 

  • Fernandes T, Iyer V and Apte S K 1993 Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses;Appl. Env. Microbiol. 59 899–904

    CAS  Google Scholar 

  • Giaver H M, Styrvold O B, Kaasen I and Strom A R 1988 Biochemical and genetic characterization of osmoregulatory trehalose synthesis inEscherichia coli;J. Bacteriol. 170 2841–2849

    Article  Google Scholar 

  • Gowrishankar J 1985 Identification of osmoresponsive genes inEscherichia coli: evidence for participation of potassium and proline transport systems in osmoregulation;J. Bacteriol. 164 434–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harold F M and Baarda J R 1968 Effects of nigericin and monactin on cation permeability ofStreptococcus faecalis and metabolic capacities of potassium-depleted cells;J. Bacteriol. 95 816–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins A. F, Cairney J, Stirling J A, Sutherland L and Booth I R 1987 Osmotic regulation of gene expression: ionic strength as an intracellular signal?;Trends Biochem. Sci. 12 339–344

    Article  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev S I, Mikami K and Murata N 2002 Salt stress and hyperosmotic stress regulate the expression of different sets of genes inSynechocystis sp. PCC 6803;Biochem. Biophys. Res. Commun. 290 339–348

    Article  CAS  Google Scholar 

  • Laemmeli U K 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4;Nature (London) 227 680–685

    Article  Google Scholar 

  • Laimins L A, Rhoads D B and Epstein W 1981 Osmotic control ofkdp operon expression inEscherichia coli;Proc. Natl. Acad. Sci. USA 78 464–468

    Article  CAS  Google Scholar 

  • Maden B E and Monro R E 1968 Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value;Eur. J. Biochem. 6 309–316

    Article  CAS  Google Scholar 

  • Monro R E 1967 Catalysis of peptide bond formation by 50S ribosomal subunits fromEscherichia coli;J. Mol. Biol. 26 147–151

    Article  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore P B and Steitz T A 2000 The structural basis of ribosome activity in peptide bond synthesis;Science 289 920–930

    Article  CAS  Google Scholar 

  • Palleros D R, Reid K L, Shi L, Welch W J and Fink A L 1993 ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis;Nature (London) 365 664–666

    Article  CAS  Google Scholar 

  • Prince W S and Villarejo M R 1990 Osmotic control ofproU transcription is mediated through direct action of potassium glutamate on the transcription complex;J. Biol. Chem. 265 17673–17679

    CAS  PubMed  Google Scholar 

  • Rajkumari K, Kusano S, Ishihama A, Mizuno T and Gowrishankar J 1996 Effects of H-NS and potassium glutamate on sigmaS- and sigma70-directed transcriptionin vitro from osmotically regulated P1 and P2 promoters ofpro U inEscherichia coli;J. Bacteriol. 178 4176–4181

    Article  CAS  Google Scholar 

  • Ramirez R M, Prince W S, Bremer E and Villarejo M 1989In vitro reconstitution of osmoregulated expression ofproU ofEscherichia coli;Proc. Natl. Acad. Sci. USA 86 1153–1157

    Article  CAS  Google Scholar 

  • Reed R H and Stewart W D P 1985 Evidence for turgor-sensitive K+ influx in the cyanobacteriumAnabaena variabilis ATCC 29413 andSynechocystis PCC 6714;Biochim. Biophys. Acta 812 155–162

    Article  CAS  Google Scholar 

  • Suelter A. H 1970 Enzymes activated by monovalent cations: patterns and predictions for the enzyme-catalysed reactions;Science 168 789–795

    Article  CAS  Google Scholar 

  • Sutherland L, Cairney J, Elmore M J, Booth I R and Higgins C.F 1986 Osmotic regulation of transcription: induction of theproU betaine transport gene is dependent on accumulation of intracellular potassium;J. Bacteriol. 168 805–814

    Article  CAS  Google Scholar 

  • Viitanen P V, Lubben T H, Reed J, Goloubinoff P, O’Keefe D P and Lorimer G K 1990 Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (GroEL) are K+ dependent;Biochemistry 29 5665–5671

    Article  CAS  Google Scholar 

  • Whatmore A H, Chudek J A and Reed R H 1990 The effects of osmotic upshock on the intracellular solute pools ofBacillus subtilis;J. Gen. Mirobiol. 136 2527–2535

    Article  CAS  Google Scholar 

  • Willis D B and Ennis H L 1968 Ribonucleic acid and protein synthesis in a mutant ofBacillus subtilis defective in potassium retention;J. Bacteriol. 96 2035–2042

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree Kumar Apte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alahari, A., Apte, S.K. A novel potassium deficiency-induced stimulon inAnabaena torulosa . J. Biosci. 29, 153–161 (2004). https://doi.org/10.1007/BF02703413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703413

Keywords

Navigation