Skip to main content
Log in

Finite element simulation of internal flows with heat transfer using a velocity correction approach

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

This paper enumerates finite-element based prediction of internal flow problems, with heat transfer. The present numerical simulations employ a velocity correction algorithm, with a Galerkin weighted residual formulation. Two problems each in laminar and turbulent flow regimes are investigated, by solving full Navier-Stokes equations. Flow over a backward-facing step is studied with extensive validations. The robustness of the algorithm is demonstrated by solving a very complex problem viz. a disk and doughnut baffled heat exchanger, which has several obstructions in its flow path. The effect of wall conductivity in turbulent heat transfer is also studied by performing a conjugate analysis. Temporal evolution of flow in a channel due to circular, square and elliptic obstructions is investigated, to simulate the vortex dynamics. Flow past an in-line tube bank of a heat exchanger shell is numerically studied. Resulting heat and fluid flow patterns are analysed. Important design parameters of interest such as the Nusselt number, Strouhal number, skin friction coefficient, pressure drop etc. are obtained. It is successfully demonstrated that the velocity correction approach with a Galerkin weighted residual formulation is able to effectively simulate a wide range of fluid flow features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autret A, Grandotto M, Dekeyser I 1987 Finite element computation of a turbulent flow over a two-dimensional backward facing step.Int. J. Numer. Methods Fluids 7: 89–102

    Article  MATH  Google Scholar 

  • Benim A C, Zinser W 1985 Investigation into the finite element analysis of confined turbulent flows using ak-ε model.Comput. Methods Appl. Mech. Engg. 51: 507–523

    Article  MATH  Google Scholar 

  • Blevins R D 1990Flow induced vibrations (New York: Von Nostrand Reinhold)

    Google Scholar 

  • Bradshaw P 1996 Understanding and prediction of turbulent flow — 1996.Int. J. Heat Fluid Flow 18: 45–54

    Article  Google Scholar 

  • Braza M, Chassiang P, Ha Minh M 1986 Numerical study and physical analysis of pressure and velocity field in the near wake of a circular cylinder.J. Fluid Mech. 165: 79–130

    Article  MathSciNet  MATH  Google Scholar 

  • Chilukuri R 1987 Incompressible laminar flow past a transversely vibrating cylinder.Trans. ASME J. Fluids Eng.109: 166–171

    Article  Google Scholar 

  • Chorin A J 1968 Numerical solution of the Navier-Stokes equations.Math. Comput. 22: 745–762

    Article  MathSciNet  MATH  Google Scholar 

  • Collins R J 1973 Band width reduction by automatic renumbering.Int. J. Numer. Methods Eng. 6: 345–356

    Article  Google Scholar 

  • Davis R W, Moore E F, Purtell L P 1984 A numerical and experimental study of confied flow around rectangular cylinders.Phys. Fluids 27: 46–59

    Article  Google Scholar 

  • Denham M Ket al 1975 A directionally sensitive laser anemometer for velocity measurement in highly turbulent flows.J. Phys. 8: 681–683

    Google Scholar 

  • Donea J, Ginliani S, Laval H, Quartapele 1982 Finite element solution of unsteady Navier-Stokes equations by fractional step method.Comput. Method Appl. Mech. Eng. 30: 53–73

    Article  MATH  Google Scholar 

  • Dhaubhadel M N, Reddy J N, Telionis D P 1986 Penalty finite element analysis of coupled fluid flow and heat transfer for in-line bundle of cylinders in cross flow.J. Non-linear Mech. 21: 361–373

    Article  MATH  Google Scholar 

  • Durst F, Tropea C 1982 Flow over a two-dimensional backward facing step.IUTAM symposium on structures of complex turbulent shear flows (eds) R Dumas, L. Fulachier (New York: Springer), pp. 41–52

    Google Scholar 

  • Eaton B E1987 Analysis of laminar vortex shedding behind a circular cylinder by computer-aided flow visualization.J. Fluid Mech. 180: 117–145

    Article  Google Scholar 

  • Ferziger J H 1987 Simulation of incompressible turbulent flows.J. Comput. Phys. 69: 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher C A J 1984Computational Galerkin methods (New York: Springer-Verlag)

    MATH  Google Scholar 

  • Fujii M, Fujii T, Nagata T 1984 A numerical analysis of laminar flow and heat transfer of air to in-line tube banks.Numer. Heat Trans. 7: 89–102

    MATH  Google Scholar 

  • Gresho P M 1990 On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix Part 1: Theory,Int. J. Numer. Method Fluid 11: 587–620

    Article  MathSciNet  MATH  Google Scholar 

  • Gresho P M, Chan S T, Lee R L, Upson C D 1984 A modified finite element method for solving the time-dependent incompressible Navier-Stokes equations Part 1: Theory.Int. J. Numer. Method Fluids 4: 557–598

    Article  MATH  Google Scholar 

  • Griffin O M, Votaw C W 1972 The vortex street in the wake of a vibrating cylinder.J. Fluid Mech. 51: 31–48

    Article  Google Scholar 

  • Isomoto K, Honmd 1989 The effect of turbulent intensity on the reattachment process over a back ward facing step.Trans. ASME J. Fluids Eng. 111: 87–92

    Article  Google Scholar 

  • Jones WP, Launder BE 1972 The prediction of laminarization with a two-equation model of turbulence.Int. J. Heat Mass Trans. 15: 301–314

    Article  Google Scholar 

  • Karniadakis G M 1988 Numerical simulation of forced convection heat transfer from a cylinder in cross flow.Int. J. Heat Mass Transfer 31: 107–118

    Article  Google Scholar 

  • Kelkar KM, Patankar S V 1992 Numerical prediction of vortex shedding behind a square cylinder.Int. J. Numer. Method Fluids 14: 327–341

    Article  MATH  Google Scholar 

  • Kim J, Moin P 1985 Application of a fractional step method to incompressible Navier-Stokes equations.J. Comput. Phys. 59: 308–323

    Article  MathSciNet  Google Scholar 

  • Kovacs A, Kawahara M 1991 A finite element scheme based on the velocity correction method for the solution of the time-dependent incompressible Navier-Stokes equations. Part 2: Applications.Int. J. Numer. Method Fluids 13: 403–423

    Article  Google Scholar 

  • Kovasznay L S G 1949 Hot wire investigation of wake behind cylinders at low Reynolds numbers.Proc. R. Soc. A198: 174–190

    Google Scholar 

  • Krishne Gowda Y T 1996 finite element simulation of flow past tube banks with heat transfer. Ph D Thesis, Indian Institute of Technology, Chennai, India

    Google Scholar 

  • Lam C K G, Bremhorst K 1981 A modified form ofk-ε model for predicting wall turbulence.Trans. ASME, J. Fluids Eng. 103: 456–460

    Google Scholar 

  • Launder B E, Massey T H 1978 The numerical predictions of viscous flow and heat transfer in tube banks.Trans. ASME J. Heat Transfer 100: 565–571

    Google Scholar 

  • Launder B E, Sharma B L 1974 Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc.Lett. Heat Mass Trans 1: 131–145

    Article  Google Scholar 

  • Launder B E, Spalding B E 1972Lectures in mathematical models of turbulence (London: Academic Press)

    MATH  Google Scholar 

  • Leschziner MA 1993 Computational modelling of complex turbulent flow — expectations, reality and prospects.J. Wind Eng. Ind. Aeroyn. 46&47: 37–51

    Article  Google Scholar 

  • Li H, Kottke V 1999 Analysis of local shell side heat and mass transfer in the shell and tube heat exchanger with disk and dough nut baffles.Int. J. Heat Mass Transfer 42: 3509–3521

    Article  MATH  Google Scholar 

  • Marvin J G, Huang GP 1998 Status and future directions for turbulence modelling.Sadhana, 23: 481–503

    Article  Google Scholar 

  • Mukhopadhyay A, Biswas G, Sundararajan T 1992 Numerical investigation of confined wakes behind a square cylinder in a channel.Int. J. Numer. Method Fluid 14: 1473–1484

    Article  MATH  Google Scholar 

  • Nallasamy M 1987 Turbulence models and their applications to the prediction of internal flows: A review.Comput. Fluids 15: 151–194

    Article  MATH  Google Scholar 

  • Natrajan R 1992 A numerical method for incompressible viscous flow simulation.J. Comput. Phys. 100: 384–395

    Article  Google Scholar 

  • ökajima A 1982 Strouhal number of rectangular cylinders.J. Fluid Mech. 123: 379–398

    Article  Google Scholar 

  • ökajima A 1990 Numerical simulation of flow around rectangular cylinders.J. Wind Eng. Indian Aerodyn. 33: 171–180

    Article  Google Scholar 

  • Patnaik B S V 1994Finite element analysis of flow past bluff bodies with heat transfer. MS thesis, Indian Institute of Technology, Chennai

    Google Scholar 

  • Patnaik B S V 1998Finite element analysis of flow past a circular cylinder and two cylinders in tandem: influence of vibration, buoyancy. Ph D thesis, Indian Institute of Technology, Chennai

    Google Scholar 

  • Patnaik B S V, Seetharamu K N, Aswatha Narayana P A 1996 Simulation of laminar confined flow past a circular cylinder with an integral wake splitter plate involving heat transfer.Int. J. Numer. Method. Heat Fluid Flow 6: 65–81

    Article  MATH  Google Scholar 

  • Patnaik B S V, Aswatha Narayana PA, Seetharamu KN 1999a Numerical simulation of vortex shedding past a circular cylinder under the influence of buoyancy.Int. J. Heat Mass Transfer 42: 3495–3507

    Article  MATH  Google Scholar 

  • Patnaik B S V, Aswatha Narayana PA, Seetharamu KN 1999b Numerical simulation of laminar flow past a transversely vibrating circular cylinder.J. Sound Vib. 228: 459–475

    Article  Google Scholar 

  • Perkins H C, Leppert G 1964 Local heat transfer coefficients on a uniformly heated cylinder.Int. J. Heat Mass Transfer 7: 143–158

    Article  Google Scholar 

  • Perry A E, Chong M S, Lim T J 1982 The vortex shedding behind two-dimensional bluff bodies.J. Fluid Mech.116:77–90

    Article  Google Scholar 

  • Ramaswamy B, Jue T C, Akin J E 1992 Semi-implicit and explicit finite element schemes for coupled fluid/thermal problems.Int. J. Numer. Methods Eng. 34: 675–696

    Article  MATH  Google Scholar 

  • Ravikumaur S G 1988Finite element analysis of convective heat transfer and heat exchangers. Ph D thesis, Indian Institute of Technology, Chennai

    Google Scholar 

  • Ravisankar MS 1991Finite element analysis of turbulent flows with heat transfer. MS thesis, Indian Institute of Technology, Chennai

    Google Scholar 

  • Ren G, Utnes T 1993 A finite element solution of the time-dependent incompressible Navier-Stokes equations using a modified velocity correction method.Int. J. Numer. Methods Fluids 17: 349–364

    Article  MATH  Google Scholar 

  • Roshko A 1993 Perspectives on bluff body aerodynamics.Int. J. Wind Eng. Ind. Aerodyn. 49: 79–100

    Article  Google Scholar 

  • Rodi W 1982 Examples of turbulence models for incompressible flows.AIAA J. 20: 872–879

    Article  Google Scholar 

  • Rodi W 1984Turbulence models and their applications in hydraulics — A state of the art review. 2nd edn. IAHR (Delft:)

    Google Scholar 

  • Sa J Y, Chang K S 1991 Shedding patterns of near wake vortices behind a circular cylinder.Int. J. Numer. Methods Fluid 12: 463–474

    Article  MATH  Google Scholar 

  • Segarlind L J 1984Applied finite element analysis (New York: Wiley)

    Google Scholar 

  • Srinivas M 1994Finite element analysis of internal flows with heat transfer PhD thesis, Indian Institute of Technology, Chennai

    Google Scholar 

  • Srinivas M, Ravisankar M S, Seetharamu K N, Aswatha Narayana P A 1994 Finite element analysis of internal flows with heat transfer.Sadhana 19: 785–816

    Article  Google Scholar 

  • Taylor C, Harper J J, Hughes T G, Morgan K 1981 An analysis of developing turbulent flow in a circular pipe by finite element method.Proc. Numer Methods Laminar Turbulence Flows (eds) Bakeret al (Swansea: Pineridge)

    Google Scholar 

  • Williamson C H K 1988 The existence of two stages in the transition to three dimensionality of a cylinder wake.Phys. Fluids 31: 3165–3168

    Article  Google Scholar 

  • Williamson C H K 1996 Vortex dynamics in the cylinder wake.Annu. Rev. Fluid Mech. 28: 477–539

    Article  MathSciNet  Google Scholar 

  • Zhang C, Sousa ACM 1990 Numerical simulation of turbulent shear flow in an isothermal heat exchanger model.Trans. ASME J. Fluids Eng. 112: 48–55

    Article  Google Scholar 

  • Zhu J, Sethian J 1992 Projection methods coupled to level set interface techniques.J. Comput. Phys. 102: 128–138

    Article  MATH  Google Scholar 

  • Zienkiewicz O C, Philips D V 1971 An automatic mesh generation scheme for plane and curved surfaces by iso-parametric co-ordinates.Int. J. Numer. Methods Eng. 3: 519–528

    Article  MATH  Google Scholar 

  • Zukauskas A A 1987 Heat transfer from tubes in cross flow.Adv. Heat Transfer 18: 87–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patnaik, B.S.V., Gowda, Y.T.K., Ravisankar, M.S. et al. Finite element simulation of internal flows with heat transfer using a velocity correction approach. Sadhana 26, 251–283 (2001). https://doi.org/10.1007/BF02703387

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703387

Keywords

Navigation