Journal of Biosciences

, Volume 21, Issue 3, pp 379–395 | Cite as

Genetic regulation of flower development

  • Usha Vijayraghavan
Article

Abstract

Flower development provides a model system to study mechanisms that govern pattern formation in plants. Most flowers consist of four organ types that are present in a specific order from the periphery to the centre of the flower. Reviewed here are studies on flower development in two model species:Arabidopsis thaliana andAntirrhinum majus that focus on the molecular genetic analysis of homeotic mutations affecting pattern formation in the flower. Based on these studies a model was proposed that explains how three classes of regulatory genes can together control the development of the correct pattern of organs in the flower. The universality of the basic tenets of the model is apparent from the analysis of the homologues of theArabidopsis genes from other plant species

Keywords

Flower development homeotic mutations Arabidopsis thaliana 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez J, Guli C L, Yu X-H and Smyth D R 1992 Terminal flower: A gene affecting inflorescence development inArabidopsis thaliana;Plant J. 2 103–116CrossRefGoogle Scholar
  2. Angenenet G C, Busscher M, Franken J, Mol J N M and Van Tunen A J 1992 Differential expression of two MADS box genes in wild type and mutant petunia flowers;Plant Cell 4 983–993CrossRefGoogle Scholar
  3. Angenenet G C, Franken J, Busscher M, Weiss D and Van Tunen A J 1994 Co-suppression of the petunia homeoticgenefbp2 affects the identity of the generative meristem;Plant J. 5 33–44CrossRefGoogle Scholar
  4. Bateson W 1894Materials for the study of variation (Cambridge: Cambridge University Press)Google Scholar
  5. Bowman J L, Smyth D R and Meyerowitz E M 1989 Genes directing flower development inArabidopsis;Plant Cell 1 37–52PubMedCrossRefGoogle Scholar
  6. Bowman J L, Sakai H, Jack T, Weigel D, Mayer U and Meyerowitz EM 1992 SUPERMAN, a regulator of floral homeotic genes inArabidopsis;Development 114 599–615PubMedGoogle Scholar
  7. Bowman J L, Alvarez J, Weigel D, Meyerowitz E M and Smyth D R 1993 Control of flower development inArabidopsis thaliana byAPETALA1 and interacting genes;Development 119 721–743Google Scholar
  8. Bradley D, Carpenter R, Sommer H, Hartley N and Coen E S 1993 Complementary floral phenotypes result from opposite orientations of a transposon at theplena locusOf Antirrhinum, Cell 72 85–95PubMedCrossRefGoogle Scholar
  9. Carpenter R and Coen E S 1990 Floral homeotic mutations produced by transposon-mutagenesis inAntirrhinum majus;Genes Dev. 4 1483–1493PubMedCrossRefGoogle Scholar
  10. Chung Y Y, Kim S-R, Finkel D, Yanofsky M F and An G 1994 Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene;Plant Mol. Biol. 26 657–665PubMedCrossRefGoogle Scholar
  11. Clark S E, Running M P and Meyerowtiz EM 1993CLAVAT Al, a regulator of meristem and floral development inArabidopis;Development 119 397–418PubMedGoogle Scholar
  12. Clark S E, Running M P and Meyerowitz EM 1995CLAV AT A3 is a specific regulator of shoot and floral meristem development affecting the same process asCLAV AT Al;Development 121 2057–2067Google Scholar
  13. Coen E S and Meyerowitz E M 1991 The war of the whorls: Genetic interactions controlling flower development;Nature (London) 353 31–37CrossRefGoogle Scholar
  14. Coen E S, Romero J M, Doyle S, Elliot R, Murphy G and Carpenter R 1990floricula: A homeotic gene required for flower development inAntirrhinum majus;Cell 63 1311–1322PubMedCrossRefGoogle Scholar
  15. Drews G N, Bowman J L and Meyerowitz EM 1991 Negative regulation of theArabidopsis homeotic geneAGAMOUS by theAPETALA2 product;Cell 65 991–1002PubMedCrossRefGoogle Scholar
  16. Goto K and Meyerowitz E M 1994 Function and regulation of theArabidopsis floral homeotic genePISTILLATA;Genes Dev. 8 1548–1560PubMedCrossRefGoogle Scholar
  17. Gustafson-Brown C, Savidge B and Yanofsky M F 1994 Regulation of theArabidopsis floral homeotic geneAPETALA1;Cell 76 131–143PubMedCrossRefGoogle Scholar
  18. Hantke S S, Carpenter R and Coen E S 1995 Expressionof floricula in single cell layers of periclinal chimeras activates downstream homeotic gene in all layers of floral meristem;Development 121 27–35PubMedGoogle Scholar
  19. Huijser P, Klein J, Lonning W-E, Meijer H, Saedler H and Sommer H 1992Bracteomania, an inflorescence anomaly is caused by the loss of function of the MADS box geneSQU AMOSA inAntirrhinum majus;EMBOJ. 11 1239–1249Google Scholar
  20. Irish V F and Sussex I M 1990 Function of theAPETALA1 gene duringArabidopsis floral development;Plant Cell 2 741–753PubMedCrossRefGoogle Scholar
  21. Jack T, Brockman L L and Meyerowitz E M 1992 The homeotic geneAPETALA3 ofArabidopsis thaliana encodes a MADS box gene and is expressed in petals and stamens;Cell 68 683–697PubMedCrossRefGoogle Scholar
  22. Jack T, Fox G L and Meyerowitz E M 1994Arabidopsis homeotic geneAPETALA3 ectopic expression: transcriptional and post-transcriptional regulation determine floral organ identity;Cell 76 703–716PubMedCrossRefGoogle Scholar
  23. Jofuku K D, van den Boer B G W, van Montagu M and Okamuro J 1994 Control ofArabidopsis flower and seed development by the homeotic geneAPETALA2;Plant Cell 6 1211–1225PubMedCrossRefGoogle Scholar
  24. Kelly A J, Bonnlander MB and Meeks-Wagner D 1995NFL, the tobacco homolog ofFLORICULA andLEAFY, is transcriptionally expressed in both vegetative and floral meristems;Plant Cell 7 225–234PubMedCrossRefGoogle Scholar
  25. Kempin S A, Mandel M A and Yanofsky M F 1993 Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic geneNAG1;Plant Physiol. 103 1041–1046PubMedCrossRefGoogle Scholar
  26. Kempin S A, Savidge B and Yanofsky M F 1995 Molecular basis of thecauliflower phenotype inArabidopsis;Science 267 522–525PubMedCrossRefGoogle Scholar
  27. Krizek B A and Meyerowitz E M 1996 TheArabidopsis homeotic genesAPETALA3 andPISTILLATA are sufficient to provide the B class organ identity function;Development 122 11–22PubMedGoogle Scholar
  28. Liu Z and Meyerowitz E M 1995LEUNIG regulatesAGAMO US expression inArabidopsis flowers;Development 121 975–991PubMedGoogle Scholar
  29. Ma H 1994 The unfolding drama of flower development: recent results from genetic and molecular analysis;Genes Dev. 8 745–756PubMedCrossRefGoogle Scholar
  30. Ma H, Yanofsky M F and Meyerowitz E M 1991AGL1-AGL6, anArabidopsis gene family with similarity to floral homeotic and transcription factor genes;Genes Dev. 5 485–495CrossRefGoogle Scholar
  31. Mandel M A, Bowman J L, Kempin S A, Ma H, Meyerowitz E M and Yanofsky M F 1992a Manipulation of flower structure in transgenic tobacco;Cell 71 133–143PubMedCrossRefGoogle Scholar
  32. Mandel M A, Gustafson-Brown C, Savidge B and Yanofsky M F 1992b Molecular characterization of theArabidopsis floral homeotic geneAPETALA1;Nature (London) 360 273–277CrossRefGoogle Scholar
  33. Mandel M A and Yanofsky M F 1995 A gene triggering flower formation inArabidopsis:Nature (London) 377 522–524CrossRefGoogle Scholar
  34. Mizukami Y and Ma H 1992 Ectopic expression of the floral homeotic geneAGAMOUS in transgenicArabidopsis plants alter floral identity;Cell 71 119–131PubMedCrossRefGoogle Scholar
  35. Poethig R W 1990 Heterochronic mutations affecting shoot development in maize;Genetics 119 959–973Google Scholar
  36. Pneuli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z and Lifschitz E 1991 The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structure and homology with homeotic genes fromAntirrhinum andArabidopsis;Plant J. 1 253–266Google Scholar
  37. Pneuli L, Hareven D, Broday L, Hurwitz C and Lifshitz E 1994 TheTM5 MADS box gene mediates organ differentiation in three inner whorls of tomato flowers;Plant Cell 6 175–186CrossRefGoogle Scholar
  38. Sakai H, Medrano L and Meyerowitz E M 1995 Role ofSUPERMAN in maintainingArabidopsis floral whorl boundaries;Nature (London) 378 199–203CrossRefGoogle Scholar
  39. Schmidt R J, Veit M A, Mandel M A, Mena M, Hake S and Yanofsky M F 1993 Identification and molecular characterization ofZAG1, the maize homolog of theArabidopsis floral homeotic gene,AGAMOUS;Plant Cell 5 729–737PubMedCrossRefGoogle Scholar
  40. Schultz E A and Haughn G W 1993 Genetic analysis of the floral initiation process (FLIP) inArabidopsis;Development 119 745–765Google Scholar
  41. Schwarz-Sommer Z, Hue I, Huijser P, Flor P J, Hansen R, Tetens F, Lonnig W-E, Saedler H and Sommer H 1992 Characterization of theAntirrhinum floral homeotic MADS-box genedeficiens: evidence for DNA binding and autoregulation of its persistent expression throughout floral development;EMBO J. 11 251–263PubMedGoogle Scholar
  42. Shannon S and Meeks-Wagner D R 1991 A mutation in theArabidopsis TFL1 gene affects inflorescence meristem development;Plant Cell 3 977–892CrossRefGoogle Scholar
  43. Shirashi H, Okada K and Shimura Y 1993 Nucleotide sequences recognised by theAGAMOUS MADS domain ofArabidopsis thaliana in vitro;Plant J. 4 385–398CrossRefGoogle Scholar
  44. Simon R, Carpenter R, Doyle S and Coen E 1994Fimbriata controls flower development by mediating between meristem identity and organ identity genes;Cell 78 99–107PubMedCrossRefGoogle Scholar
  45. Smyth D R, Bowman J L and Meyerowitz E M 1990 Early flower development inArabidopsis;Plant Cell 2 755–767PubMedCrossRefGoogle Scholar
  46. Sung Z R, Belachew A, Shunong B and Bertrand-Garica R 1992EMF, anArabidopsis gene required for vegetative shoot development;Science 258 1645–1647PubMedCrossRefGoogle Scholar
  47. Trobner W, Ramirez L, Motte P, Hue I, Hiujser P, Lonnig W-E, Saedler H, Sommer H and Schwarz-Sommer Z 1992GLOBOSA: A homeotic gene which interacts withDEFICIENS in the controlof Antirrhinum floral organogenesis;EMBOJ. 11 4693–4704Google Scholar
  48. Tsuchimoto S, van der Krol A R and Chua N-H 1993 Ectopic expression ofpMADS3 in transgenic petunia phenocopies the petunia blind mutant;Plant Cell 5 843–853PubMedCrossRefGoogle Scholar
  49. van der Krol A R, Brunelle A, Tsuchimoto S and Chua N-H 1993 Functional analysis of petunia floral homeotic MADS box genepMADSl;Genes Dev. 7 1214–1228PubMedCrossRefGoogle Scholar
  50. Weigel D, Alvarez J, Smyth D R, Yanofsky M F and Meyerowitz E M 1992LEAFY controls floral meristem identity inArabidopsis;Cell 69 843–859PubMedCrossRefGoogle Scholar
  51. Weigel D and Meyerowitz E M 1994 The ABCs of floral homeotic genes;Cell 78 203–209PubMedCrossRefGoogle Scholar
  52. Weigel D and Meyerowitz E M 1993 Activation of floral homeotic genes inArabidopsis;Science 261 1723–1726PubMedCrossRefGoogle Scholar
  53. Weigel D 1995 TheAPETALA2 domain is related to a novel type of DNA binding domain;Plant Cell 7 388–389PubMedCrossRefGoogle Scholar
  54. Weigel D and Nilssen O 1995 A developmental switch sufficient for flower initiation in diverse plants;Nature (London) 377 495–500CrossRefGoogle Scholar
  55. Yanofsky M F, Ma H, Bowman J L, Drews G W, Feldman K A and Meyerowitz E M 1990 The protein encoded by theArabidopsis homeotic geneagomous resembles transcription factors;Nature (London) 346 5–39CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • Usha Vijayraghavan
    • 1
  1. 1.Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia

Personalised recommendations