Skip to main content
Log in

Unravelling of physiological functions of retinoids using a dominant-negative retinoic acid receptor

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

We have constructed dominant-negative retinoic acid receptors by substituting a single amino acid which has been found in a dominant-negative thyroid hormone receptor, and have expressed the dominant-negative retinoic acid receptors in the epidermis, a potential target organ of retinoic acid. The resultant transgenic mice exhibited dramatic suppression of epidermal development, demonstrating the absolute requirement of retionic acid in normal skin development. This novel method, targeted expression of the dominant-negative receptor, is theoretically applicable to any organ, thus opening the way to defining the physiological roles of retionic acid as well as other lipophilic hormones during embryogenesis as well as in adults

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M, Nagaya T, Tone Y, Jameson J L and Chatlerjee V K K 1992 Functional properties of a novel mutant thyroid hormone receptor in a family with generalized thyroid hormone resistance syndrome;Clin. Endocrinol. 36 281–289

    CAS  Google Scholar 

  • Armstrong R B, Ashenfelter K O, Eckhoff C, Levin A A and Shapiro S S 1994 General and reproductive toxicology of retinoids, inThe retinoids: Biology, Chemistry, and Mediane, 2nd Edition (eds) M B Sporn, A B Roberts and D S Goodman (New York: Raven) pp 545–572

    Google Scholar 

  • Baker A R, McDonnell D P, Hughes M, Crisp T M, Mangelsdorf D J, Haussier M R, Pike J W, Shine J and O’Malley B W 1988 Cloning and expression of full-length cDNA encoding human vitamin D receptor;Proc. Natl. Acad. Sci. USA 85 3294–3298

    Article  PubMed  CAS  Google Scholar 

  • Benbrook D, Lernhardt E and Pfahl M 1988 A new retinoic acid receptor identified from a hepatocellular carcinoma;Nature (London) 333 669–672

    Article  CAS  Google Scholar 

  • Benbrook D and Pfahl M 1987 A novel thyroid hormone receptor encoded by a cDNA clone from a human testis library;Science 238 788–791

    Article  PubMed  CAS  Google Scholar 

  • Brand N, Petkovich M K Rust A, Chambon P, de The H, Marchio A, Tiollais P and Dejean A 1988 Identification of a second human retinoic acid receptor;Nature (London) 332 850–853

    Article  CAS  Google Scholar 

  • Byrne C, Tainsky M and Fuchs E 1994 Programming gene expression in developing epidermis;Development 120 2369–2383

    PubMed  CAS  Google Scholar 

  • Bugge TH, Pohl J, Lonnoy O and Stunnenberg H G 1992 RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors;EMBO J. 11 1409 1418

    PubMed  CAS  Google Scholar 

  • Chen J D and Evans R M 1995 A transcriptional co-repressor that interacts with nuclear hormone receptors;Nature (London) 377 454–457

    Article  CAS  Google Scholar 

  • Damm K, Thompson C C and Evans R M 1989 Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist;Nature (London) 339 593–597

    Article  CAS  Google Scholar 

  • Damm K, Heyman R A, Umesono K and Evans R M 1993 Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants;Proc. Natl. Acad. Sci. USA 90 2989–2993

    Article  PubMed  CAS  Google Scholar 

  • Dale B A, Holbrook K A, Kimball J R, Hof M and Sun T-T 1985 Expression of epidermal keratins and filaggrin during human fetal skin development;J. CellBiol. 101 1257 1269

    Article  CAS  Google Scholar 

  • de The H, Lavau C, Marchio A, Chomienne C, Degos L and Dejean A 1991 The PML-RARα fusion mRNA generated by the t(15; 17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR;Cell 66 675–684

    Article  PubMed  Google Scholar 

  • Evans R M 1988 The steroid and thyroid hormone receptor superfamily;Science 240 889–895

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E and Green H 1980 Changes in keratin gene expression during terminal differentiation of the keratinocyte;Cell 19 1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E and Green H 1981 Regulation of terminal differentiation of cultured human keratinocytes by vitamin A;Cell 25 617–625

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Ong E S, Segui P and Evans R M 1987 Identification of a receptor for the morphogen retinoic acid;Nature (London) 330 624–629

    Article  CAS  Google Scholar 

  • Grüneberg H 1943 The development of some external features in mouse embryos;J. Hered. 34 89–92

    Google Scholar 

  • Hamada K, Gleason S L, Levi B-Z, Hirschfeld S, Appella E and Ozato K 1989 H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element;Proc. Natl. Acad. Sci. USA 86 8289–8293

    Article  PubMed  CAS  Google Scholar 

  • Hanson J 1947 The histogenesis of the epidermis in the rat and mouse;J. Anat. 81 174–197

    PubMed  CAS  Google Scholar 

  • Hörlein A J, Näär A M, Heinzel T, Torchia J, Glass B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass C K and Rosenfeld M G 1995 Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor;Nature (London) 377 397–404

    Article  Google Scholar 

  • Imakado S, Bickenbach J R, Bundman D S, Rothnagel J A, Attar P S, Wang X J, Walczak V R, Wisniewski S, Pote J, Gordon J S, Heyman R A, Evans R M and Roop D R 1995 Targeting expression of a dominantnegative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function;Gene. Dev. 9 317–329

    Article  PubMed  CAS  Google Scholar 

  • Kakizuka A, Miller W H Jr, Umesono K, Warrell R P Jr, Frankel S R, Murty V V V S, Dmitrovsky E and Evans R M 1991 Chromosomal translocation t(15; 17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor PML;Cell 66 663–674

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M and Chambon P 1995 Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life?Cell 83 859–869

    Article  PubMed  CAS  Google Scholar 

  • Kliewer S A, Umesono K, Mangelsdorf D J and Evans R M 1992 Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling;Nature (London) 355 446–449

    Article  CAS  Google Scholar 

  • Kopan R and Fuchs E 1989 The use of retinoic acid to probe the relation between hyperproliferationassociated keratins and cell proliferation in normal and malignant epidermal cell;J. Cell Biol. 109 295–307

    Article  PubMed  CAS  Google Scholar 

  • Krust A, Kastner P, Petkovich M, Zelent A and Chambon P 1989 A third human retinoic acid receptor, hRAR-gamma;Proc. NatlAcad. Sci. USA 86 5310–5314

    Article  CAS  Google Scholar 

  • Korokawa R, Söderström M, Hörlein A, Halachmi S, Brown M, Rosenfeld M G and Glass C K 1995 Polarity-specific activities of retinoic acid receptors determined by a co-repressor;Nature (London) 377 451–454

    Article  Google Scholar 

  • Laudet V, Hänni C, Coll J, Catzeflis F and Stehelin D 1992 Evolution of the nuclear receptor gene superfamily;EMBO. J. 11 1003–1013

    PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J Y, Staub A, Garnier J M, Mader S and Chambon P 1992 Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently;Cell 68 377–395

    Article  PubMed  CAS  Google Scholar 

  • Li E, Sucov H M, Lee K-F, Evans R M and Jaenisch R 1993 Normal developmnent and growth of mice carrying a targeted disruption of the α1 retinoic acid receptor;Proc. Natl. Acad. Sci. USA 90 1590–1594

    Article  PubMed  CAS  Google Scholar 

  • Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M and Chambon P 1993 Function of retinoic acid receptor gamma in the mouse;Cell 73 643–658

    Article  PubMed  CAS  Google Scholar 

  • Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub M P, LeMeur M and Chambon P 1993 High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice;Proc. Natl. Acad. Sci. USA 90 7225–7229

    Article  PubMed  CAS  Google Scholar 

  • Matsui T and Sashihara S 1995 Tissue-specific distribution of a novel C-terminal truncation retinoic acid receptor mutant which acts as a negative repressor in a promoterand cell-type-specific manner;Mol. Cell. Biol. 15 1961–1967

    PubMed  CAS  Google Scholar 

  • Mangelsdorf D J, Borgmeyer U, Heyman R A, Zhou J Y, Ong E S, Oro A E, Kakizuka A and Evans R M 1992 Characterization of three RXR genes that mediate the action of 9-cis retinoic acid;Gene Dev. 6 329–344

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf D J, Ong E S, Dyck J A and Evans R M 1990 Nuclear receptor that identifies a novel retinoic acid response pathway;Nature (London) 345 224–229

    Article  CAS  Google Scholar 

  • Mangelsdorf D J, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P and Evans R M 1995 The nuclear receptor superfamily: The second decade;Cell 83 835–839

    Article  PubMed  CAS  Google Scholar 

  • Marks M S, Hallenbeck P L, Nagata T, Segars J H, Appella E, Nikodem V M and Ozato K 1992 H-2RIIBP (RXR beta) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic and and thyroid hormone responsive genes;EMBO J. 11 1419–1435

    PubMed  CAS  Google Scholar 

  • McDonnell D P, Mangelsdorf D J, Pike J W, Haussler M R and O’Malley B W 1987 Molecular cloning of complementary DNA encoding the avain receptor for vitamin D;Science 235 1214–1217

    Article  PubMed  CAS  Google Scholar 

  • Mixson A J, Parrilla R, Ransom S C, Wiggs E A, McClaskey J H, Hauser P and Weintraub B D 1992 Correlations of language abnormalities with localization of mutations in the beta-thyroid hormone receptor in 13 kindreds with generalized resistance of thyroid hormone: identification of four new mutations;J. Clin. Endocrinol. Metab. 75 1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Parrilla R, Mixson A J, McPherson J A, McClaskey J H and Weintraub B D 1991 Characterization of seven novel mutations of theC-erbAβ gene in unrelated kindreds with generalized thyroid hormone resistance;J. Clin. Invest. 88 2123–2130

    Article  PubMed  CAS  Google Scholar 

  • Petkovich M, Brand N J, Krust A and Chambon P 1987 A human retinoic acid receptor which belongs to the family of nuclear receptors;Nature (London) 330 444–450

    Article  CAS  Google Scholar 

  • Refetoff S 1982 Syndrome of thyroid hormone resistance;Am. J. Physiol. 243 E88–98

    PubMed  CAS  Google Scholar 

  • Refetof S, DeGroot L J, Benard B and De Wind L T 1972 Studies of a sibship with apparent hereditary resistance to the intracellular action of thyoid hormone;Metabolism 21 723–756

    Article  Google Scholar 

  • Refetoff S, De Wind L T and DeGroot L J 1967 Familial syndrome combining deaf-mutism, stippled epiphyses, goiter and abnormal high PBI: possible target organ refractoriness to thyroid hormone;J. Clin. Endocrinol. Metab. 27 279–294

    Article  PubMed  CAS  Google Scholar 

  • Robertson K A, Emami B and Collins S J 1992 Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity;Blood 80 1885–1889

    PubMed  CAS  Google Scholar 

  • Saitou M, Narumiya S and Kakizuka A 1994 Alternation of a single amino acid residue in retinoic acid receptor causes dominant-negative phenotype;J. Biol. Chem. 269 19101–19107

    PubMed  CAS  Google Scholar 

  • Saitou M, Sugai S, Tanaka T, Shimouchi K, Fuchs E, Narumiya S and Kakizuka A 1995 Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor;Nature (London) 374 159–162

    Article  CAS  Google Scholar 

  • Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennström B 1986 Thec-erb-A protein is a high-affinity receptor for thyroid hormone;Nature (London) 324 635–640

    Article  CAS  Google Scholar 

  • Sap J, Munoz A, Schmitt J, Stunnenberg H and Vennström B 1989 Repression of transcription mediated at a thyroid hormone response element by thev-erb A oncogene product;Nature (London) 340 242–244

    Article  CAS  Google Scholar 

  • Sasaki S, Nakamura H, Tagami T, Miyoshi Y, Tanaka K and Imura H 1992 A point mutation of the T3 receptorβ1 gene in a kindred of generalized resistance to thyroid hormone;Mol. Cell. Endocrinol. 84 159–166

    Article  PubMed  CAS  Google Scholar 

  • Sucov H M, Murakami K K and Evans R M 1990 Characterization of an autoregulated response element in the mouse retinoic acid receptor type beta gene;Proc. Natl. Acad. Sci. USA 87 5392–5396

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Weiss R E and Refetof S 1992 Rapid localization of mutations in the thyroid hormone receptor gene by denaturing gradient gel electrophoresis in 18 families with thyroid hormone resistance;J. Clin. Endoclinol Metab. 74 712–719

    Article  CAS  Google Scholar 

  • Thompson C C, Weinberger C, Lebo R and Evans R M 1987 Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system;Science 237 1610–1614

    Article  PubMed  CAS  Google Scholar 

  • Tsai S, Bartelmez S, Sitnicka E and Collins S 1994 Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymhphoid, myeloid, and erythroid development;Gene Dev. 8 2831–2841

    Article  PubMed  CAS  Google Scholar 

  • Umesono K and Evans R M 1989 Determinants of target gene specificity for steroid/thyroid hormone receptors;Cell 57 1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Umesono K, Murakami K K, Thompson C C and Evans RM 1991 Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors;Cell 65 1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Usala S J, Menke J B, Watson T L, Berard J, Bradley W E C, Bale A E, Lash R W and Weintraub B D 1991 A new point mutation in the 3, 5,3′-Triiodothyronine-binding domain of thec-erbAβ thyroid hormone receptor is tightly linked to generalized thyroid hormone resistance;J. Clin. Endocrinol. Metab. 72 32–38

    PubMed  CAS  Google Scholar 

  • Usala S J and Weintraub B D 1991 Thyroid hormone resistance syndrome;Trends Endocrinol. Metab. 2 140–144

    Article  CAS  Google Scholar 

  • Vassar R, Rosenberg M, Ross S, Tyner A and Fuchs E 1989 Tissue-Specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice;Proc. Natl. Acad. Sci. USA 86 1563–1567

    Article  PubMed  CAS  Google Scholar 

  • Weinberger C, Thompson C C, Ong E S, Lebo R, Gruol D J and Evans R M 1986 Thec-erb A gene encodes a thyroid hormone receptor;Nature (London) 324 641–646

    Article  CAS  Google Scholar 

  • Weiss R A, Eichner R and Sun T-T 1984 Monoclonal antibody analysis of keratin expression in epidermal diseases: A 48-and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes;J. Cell. Biol. 98 1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Weiss R E and Refetof S 1992 Thyroid hormone resistance;Annu. Rev. Med. 43 363–375

    Article  PubMed  CAS  Google Scholar 

  • Wolbach S B and Howe P R 1925 Tissue changes following deprivation of fat-soluble A vitamin;J. Exp. Med. 42 753–777

    Article  CAS  Google Scholar 

  • Yu V C, Delsert C, Andersen B, Holloway J M, Devary O V, Näär A M, Kim S Y, Boutin J-M, Glass C K and Rosenfeld M G 1991 RXRβ: A coregulator that enhances binding of retinoic acid, thyroid hormone, vitamin D receptors to their cognate response elements;Cell 67 1251–1266

    Article  PubMed  CAS  Google Scholar 

  • Zenke M, Munoz A, Sap J, Vennström B and Beug H 1990v-erb A oncogene activation entails the loss of hormone-dependent regulator activity ofc-erb A;Cell 61 1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Zhang X K, Hoffmann B, Tran P B V, Graupner G and Pfahl M 1992 Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors;Nature (London) 355 441–446

    Article  CAS  Google Scholar 

  • Zelent A, Krust A, Petkovich M, Kastner P and Chambon P 1989 Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin;Nature (London) 339 714–717

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakizuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakizuka, A., Saitou, M. Unravelling of physiological functions of retinoids using a dominant-negative retinoic acid receptor. J Biosci 21, 329–339 (1996). https://doi.org/10.1007/BF02703092

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703092

Keywords

Navigation