Skip to main content
Log in

Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan and Hinota, Panna area, central India: Key to the nature of sub-continental lithospheric mantle beneath the Vindhyan basin

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Amongst all the perceptible igneous manifestations (volcanic tuffs and agglomerates, minor rhyolitic flows and andesites, dolerite dykes and sills near the basin margins, etc.) in the Vindhyan basin, the two Mesoproterozoic diamondiferous ultramafic pipes intruding the Kaimur Group of sediments at Majhgawan and Hinota in the Panna area are not only the most conspicuous but also well-known and have relatively deeper mantle origin. Hence, these pipes constitute the only yet available ‘direct’ mantle samples from this region and their petrology, geochemistry and isotope systematics are of profound significance in understanding the nature of the sub-continental lithospheric mantle beneath the Vindhyan basin. Their emplacement age (∼ 1100 Ma) also constitutes the only reliable minimum age constrain on the Lower Vindhyan Group of rocks. The Majhgawan and Hinota pipes share the petrological, geochemical and isotope characteristics of kimberlite, orangeite (Group II kimberlite) and lamproite and hence are recognised as belonging to a ‘transitional kimberlite-orangeite-lamproite’ rock type. The namemajhagwanite has been proposed by this author to distinguish them from other primary diamond source rocks. The parent magma of the Majhgawan and Hinota pipes is envisaged to have been derived by very small (<1%) degrees of partial melting of a phlogopite-garnet lherzolite source (rich in titanium and barium) that has been previously subjected to an episode of initial depletion (extensive melting during continent formation) and subsequent metasomatism (enrichment). There is absence of any subduction-related characteristics, such as large negative anomalies at Ta and Nb, and therefore, the source enrichment (metasomatism) of both these pipes is attributed to the volatile- and K-rich, extremely low-viscosity melts that leak continuously to semi-continuously from the asthenosphere and accumulate in the overlying lithosphere. Lithospheric/crustal extension, rather than decompression melting induced by a mantle plume, is favoured as the cause of melting of the source regions of Majhgawan and Hinota pipes. This paper is a review of the critical evaluation of the published work on these pipes based on contemporary knowledge derived from similar occurrences elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed F 1971 Geology of the Vindhyan system in the eastern part of the Son Valley, Mirzapur District, U.P;Rec. Geol. Sur. India 96 (2) 14.

    Google Scholar 

  • Anil Kumar, Padmakumari V M, Dayal A M, Murthy D S N and Gopalan K 1993 Rb-Sr ages of Proterozoic kimberlites of India: evidence for contemporaneous emplacement;Precamb. Res. 62 227–232.

    Google Scholar 

  • Anil Kumar, Gopalan K and Rajagopalan G 2001b Age of the Lower Vindhyan sediments, Central India;Curr. Sci. 81 806–809.

    Google Scholar 

  • Auden J B 1933 Vindhyan sedimentation in Son Valley;Geol. Surv. India Memoir 62 (2) 141–250.

    Google Scholar 

  • Bachinskii S W and Simpson E L 1984 Ti-phlogopites of the Core minette: a comparison with the micas of other lamprophyres, potassic rocks, kimberlites and mantle xenoliths;Amer. Mineral. 69 41–51.

    Google Scholar 

  • Bailey D K 1982 Mantle metasomatism — continuing chemical change within the earth;Nature 296 525–430.

    Google Scholar 

  • Banerjee I 1964 On some broader aspects of Vindhyan sedimentation;Proc. 22nd Int. Geol. Congr. New Delhi, Sec 15 189–200.

    Google Scholar 

  • Basu A R and Tatsumoto M 1979 Sm-Nd systematics in kimberlites and in the minerals of garnet-lherzolite inclusions;Science 205 398–401.

    Google Scholar 

  • Beard A D, Downes H, Hegner E, Sablukov S M, Vetrin V R and Balogh K 1998 Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola peninsula, Russia: implication for the petrogenesis of kimberlites and melilites;Contrib. Mineral. Petrol. 130 288–303.

    Google Scholar 

  • Beard A D, Downes H, Hegner E, Sablukov S M 2000 Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma types;Lithos 51 47–73.

    Google Scholar 

  • Bergman S C 1987 Lamproites and other K-rich igneous rocks: review of their occurrence, mineralogy and geochemistry;Geol. Soc. London Spec. Publ. 30 103–190.

    Google Scholar 

  • Bhattacharya A 1996 (Ed) Recent Advances in Vindhyan Geology;Geol. Soc. India Memoir 36 331.

    Google Scholar 

  • Bickle M J and Eriksson K A 1982 Evolution and subsidence of early Precambrian sedimentary basins;Phil. Trans. Roy. Soc. London A305 225–247.

    Google Scholar 

  • Bizzi L A, Smith C B, Meyer H O A, Armstrong R and de Wit M J 1994 Mesozoic kimberlites and related rocks in southwestern Sao Francisco craton, Brazil: A case for local mantle reservoirs and their interaction. In:Proceedings of the fifth international kimberlite Conference, Araxa, Brasilia; (eds) Meyer H O A and Leonardos O H,CRPM Special Publication 2/91 166-171.

  • Carlson R W, Esperanca S and Svisero D P 1996 Chemical and Os isotopic study of Cretaceous potassic rocks from southern Brazil;Contrib. Mineral. Petrol. 125 393–405.

    Google Scholar 

  • Chakraborty C and Bhattacharya A 1996 The Vindhyan Basin: An overview in the light of current perspectives; In:Recent advances in Vindhyan geology (ed.) Bhattacharya A,Geol. Soc. India Memoir 36 301-312.

  • Chakraborty P P, Banerjee S, Das N G, Sarkar S and Bose P K 1996 Volcaniclastics and their sedimentalogical bearing in Proterozoic Kaimur and Rewa Groups in Central India; In:Recent advances in Vindhyan geology (ed.) Bhattacharya A,Geol. Soc. India Memoir 36 59–76.

  • Chalapathi Rao N V 2005 A petrological and geochemical reappraisal of the mesoproterozoic diamondiferous Majhgawan pipe of central India: evidence for transitional kimberlite-orangeite (group II kimberlite)-lamproite rock type;Mineral. Petrol. 84 (2) 69–106.

    Google Scholar 

  • Chalapathi Rao N V, Gibson S A, Pyle D M and Dickin A P 2004 Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar craton, southern India;J. Petrol. 45 907–948.

    Google Scholar 

  • Chaterji G C 1971 Intensification of exploration for diamond;Geol. Surv. India Misc. Publ. 19 19–28.

    Google Scholar 

  • Chatterjee A K and Rao K S 1995 Majhgawan diamondiferous pipe, Madhya Pradesh, India — A review;J. Geol. Soc. India 45 175–189.

    Google Scholar 

  • Clarke T C, Smith C B, Bristow J W, Skinner E M W and Viljoen K S 1991 Isotopic and geochemical variation in kimberlites from the south western craton margin, Prieska area, South Africa;Extended Abstracts, Fifth Intern. Kimb. Conf., Araxa, Brazil, CPRM Spec. Publ. 2/91 46–48.

    Google Scholar 

  • Clement C R 1982A comparative geological study of some major kimberlite pipes in northern Cape and Orange Free State. Unpublished Ph.D. Thesis, University of Cape Town, South Africa.

    Google Scholar 

  • Crawford A R and Compston W 1970 The age of the Vindhyan system of peninsular India;J. Geol. Soc. London 125 351–371.

    Google Scholar 

  • Dasgupta P and Phukan S 1971 Mineralogy of the altered diamondiferous pipe rock at Panna, M.P.;Geol. Surv. India Misc. Publ. 19 114–119.

    Google Scholar 

  • Dawson J B and Smith J V 1977 The MARID (micaamphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite;Geochem. Cosmochim. Acta 41 309–323.

    Google Scholar 

  • Dobson D P, Jones A P, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O and Urakawa S 1996 In-situ measurement of viscosity and density of carbonate melts at high pressure;Earth Planet. Sci. Lett. 143 207–215.

    Google Scholar 

  • Dowall D P, Nowell G M, Pearson D G, Kjarsgaard B A and Carlson J A 2000 The nature of kimberlite source regions: a Hf-Nd isotope study of Slave craton kimberlites;J. Conf. Abstr. 5 (2) 357.

    Google Scholar 

  • Dubey V S and Merh S 1949 Diamondiferous plug of Majhgawan in Central India;Quart. J. Geol. Min. Met. Soc. India 21 1–5.

    Google Scholar 

  • Edwards D, Rock N M S, Taylor W R, Griffin W J and Ramsay R R 1992 Mineralogy and petrology of the Aries diamondiferous kimberlite pipe, central kimberley block, Western Australia;J. Petrol. 3 1157–1191.

    Google Scholar 

  • Emeleus C H and Andrews J R 1975 Mineralogy and petrology of kimberlite dyke and sheet intrusions and included peridotite xenoliths from SW Greenland;Phys. Chem. Earth 9 179–198.

    Google Scholar 

  • England P and Houseman G 1984 On the geodynamic setting of kimberlite genesis;Earth Planet. Sci. Lett. 67 109–122.

    Google Scholar 

  • Foley S F 1992 Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas;Lithos 28 435–438.

    Google Scholar 

  • Foley S F, Venturelli G, Green D H and Toscani L 1987 The ultra-potassic rocks: characteristics, classification and constraints for petrogenetic models;Earth Sci. Rev. 24 81–134.

    Google Scholar 

  • Fraser K J 1987Petrogenesis of kimberlites from South Africa and lamproites from Western Australia and North America; Unpublished Ph.D. Thesis, The Open University, Milton Keynes, UK.

    Google Scholar 

  • Fraser K J, Hawkesworth C J, Erlank A J, Mitchell R H and Scott-Smith B H 1985 Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites;Earth Planet. Sci. Lett. 76 57–70.

    Google Scholar 

  • Ghosh R N 2002 Bundelkhand granite gneiss terrain — a repository for kimberlite magmatism in the central Indian peninsular shield; In:Proc. Int. Conf. on Diamonds and Gemstones (SAEEG) Raipur, Chattisgarh, pp. 30–33.

    Google Scholar 

  • Gibson S A, Thompson R N, Leonardos O H, Dickin A P, Mitchell J G 1995 The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil;J. Petrol. 36 189–229.

    Google Scholar 

  • Grantham D R 1964 The diamond deposits of Panna, Central India;Indus Diamond Rev. 24 30–35.

    Google Scholar 

  • Greenwood J C, Gibson S A, Thompson R N, Weska R K and Dickin A P 1999 Cretaceous kimberlites from the Paranatinga-Batovi region, Central Brazil: Geochemical evidence for subcratonic lithosphere mantle heterogeneity;Proc. of the Seventh Int. Kimberlite Conf. Cape Town, South Africa 1 291–298.

    Google Scholar 

  • Gupta A K, Yagi K, Lovering J and Jaques A L 1986 Geochemical and microprobe studies of the diamond-bearing ultramafic rocks from central and south India;Geol. Soc. Austral. Abstr. 16 27–29.

    Google Scholar 

  • Gurney J J and Ebrahim S 1973 Chemical composition of Lesotho kimberlites; In:Lesotho kimberlites (ed.) Nixon P H, Lesotho National Development Corporation, Maseru, pp. 280–284.

    Google Scholar 

  • Haggerty S E 1994 Super kimberlites: a geodynamic window to the earth’s core;Earth Planet. Sci. Lett. 122 57–69.

    Google Scholar 

  • Haggerty S E 1999 Diamond formation and kimberlite clan magmatism;Geochem. Soc. Spec. Publ. 6 105–123.

    Google Scholar 

  • Haggerty S E and Birkett T 2004 Geological setting and chemistry of kimberlite clan rocks in the Dharwar craton, India;Lithos 76 535–549.

    Google Scholar 

  • Halder D and Ghosh D B 1978 Tectonics of kimberlites around Majhgawan, M.P., India;Geol. Surv. India Misc. Publ. 34 (3) 1–13.

    Google Scholar 

  • Halder D and Ghosh D B 1981 Kimberlites from Panna, M.P., India: Petrology and emplacement history;Proc. IV Reg. Cong. on Geology Mineral and Energy Resources of SE Asia, Manila, Phillipines, pp. 65–87.

  • Haskin L A, Haskin M A, Frey F A and Wilderman T R 1968 Relative and absolute abundances of Rare Earths; In:Origin and distribution of elements (ed.) Ahrens L H, (New York: Pergamon) pp. 889–912.

    Google Scholar 

  • Hawkesworth C J, Fraser K J and Rogers N W 1985 Kimberlites and lamproites: extreme products of mantle enrichment processes;Trans. Geol. Soc. S. Africa 88 439–447.

    Google Scholar 

  • Hukku B M 1971 Evidence of volcanism and probable occurrence of volcanic plugs in the Lower Vindhyans of Banda district, U.P. and Rewa district, M.P.;Ind. Miner. 33 120–121.

    Google Scholar 

  • Hammond A L and Mitchell R H 2002 Accessory mineralogy of orangeite from Swartruggens, South Africa;Mineral. Petrol. 76 1–19.

    Google Scholar 

  • Indian Bureau of Mines 1996 Diamond;Bulletin 26 62.

    Google Scholar 

  • Janse A J A 1992 Archons and Cratons: Modern ideas on tectonic and structural control of economic kimberlites;Proc. Int. Round Table Conf. on Diamond Exploration and Mining (26 & 27 Nov., New Delhi) (unpaginated).

  • Jaques A L, Lewis J D and Smith C B 1986 The kimberlites and lamproites of Western Australia, Geol. Surv. Western. Australia;Geol. Surv. Western. Australia Bull. 132 268.

    Google Scholar 

  • Jaques A L, Sun S-S and Chappell B W 1989 Geochemistry of Argyle (AK1) lamproite pipe, Western Australia;Geol. Soc. Australia Spec. Publ. 14 170–188.

    Google Scholar 

  • Jaques A L and Milligan P R 2003 Patterns and controls on the distribution of diamond pipes in Australia;Proc. 8th Int. Kimberlite Conference, Victoria, British Columbia, Canada (unpaginated).

  • Kaila K L, Murthy PRK and Mall D M 1989 The evolution of the Vindhyan basinvis-à-vis the Narmada-Son lineament, central India, from deep seismic soundings;Tectonophys. 162 277–289.

    Google Scholar 

  • Kailasam L N 1971 Geophysics in diamond exploration;Geol. Surv. India Misc. Publ. 19 60–68.

    Google Scholar 

  • Kale V S 1991 Constraints on the evolution of the Purana basins of Peninsular India;J. Geol. Soc. India 38 231–252.

    Google Scholar 

  • Kaminsky F V, Sablukov S M, Sablukova I L and Channer D M D R 2004 Neoproterozoic ‘anomalous’ kimberlites of Guaniamo, Venezuela:mica kimberlites of ‘isotopic transitional’ type;Lithos 76 565–590.

    Google Scholar 

  • Kent R W, Kelley S P and Pringle M S 1998 Mineralogy and40Ar/39Ar geochronology of orangeites (Group II kimberlites) from the Damodar Valley, Eastern India;Mineral Mag. 62 313–323.

    Google Scholar 

  • Kharikov A D, Zherdev P Y, Makhotkin I L, Shermeyev V F 1991 Composition of the diamond bearing rocks of the Majhgawan pipe, Central India;Izvestia ANSSR, Seriya Seriya Geologicheskaya 3 123–132.

    Google Scholar 

  • Kramers J D, Smith C B, Lock N P, Harmon R S and Boyd F R 1981 Can kimberlite be generated from an ordinary mantle?;Nature 291 53–56.

    Google Scholar 

  • Krishnan M S and Swaminath J 1959 The Great Vindhyan basin of northern India;J. Geol. Soc India 1 10–30.

    Google Scholar 

  • Kresten P and Paul D K 1976 Mineralogy of Indian kimberlites — a thermal and X-ray study;Can. Mineral. 14 487–490.

    Google Scholar 

  • Lehmann B, Mainkar D and Belyatsky B 2002 Reconnaissance study of the very large Tokapal crater-facies kimberlite system, Chattisgarh, India;Proc. Int. Conf. on Diamonds and Gemstone (SAEEG) Raipur, Chattisgarh 1–5.

  • Le Roex A P, Bell D R and Davis P 2003 Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry;J. Petrol. 44 2261–2286.

    Google Scholar 

  • Lewis H C 1887 On a diamondiferous peridotite and the genesis of the diamond;Geol. Mag. 4 22–24.

    Google Scholar 

  • Madhavan V 2002 The present status of lamproites from the central and eastern Indian states: An identity crisis in the offing?;Proc. Int. Conf. on Diamonds and Gemstone (SAEEG). Raipur, Chattisgarh 14–16.

  • Mahotkin I L, Gibson S A, Thompson R N, Zhuravlev D Z and Zherdev P U 2000 Late Devonian Diamondiferous Kimberlite and Alkaline Picrite (Proto-kimberlite?) Magmatism in the Arkhangelsk Region, NW Russia;J. Petrol. 41 201–227.

    Google Scholar 

  • Mathur S M 1953 Diamond mining and recovery at the Majhgawan mine in Panna, Vindhyan Pradesh;Ind. Miner. 7 34–42.

    Google Scholar 

  • Mathur S M 1958 Geology of the Panna diamond deposits;Rec. Geol. Surv. India 77 787–818.

    Google Scholar 

  • Mathur S M and Singh H N 1963 Geology and sampling of the Majhgawan diamond deposit, Panna district, M.P;Bull. Geol. Surv. India 21 50–52.

    Google Scholar 

  • Mathur S M and Singh H N 1971 Petrology of the Majhgawan pipe rock;Geol. Surv. India Misc. Publ. 19 78–85.

    Google Scholar 

  • Maury R, Defant C and Joron M J 1992 Metasomatism of the sub-arc mantle inferred from trace elements in Phillipines xenoliths;Nature 360 660–661.

    Google Scholar 

  • McCulloch M T, Jaques A L, Nelson D R and Lewis J D 1983 Nd and Sr isotopes in kimberlites and lamproites from western Australia: an enriched mantle origin;Nature 302 400–403.

    Google Scholar 

  • McKenzie D P 1978 Some remarks on the development of sedimentary basins;Earth Planet. Sci. Lett. 40 25–32.

    Google Scholar 

  • McKenzie D 1989 Some remarks on the movement of small melt fractions in the mantle;Earth Planet. Sci. Lett. 95 53–72.

    Google Scholar 

  • Medlicott H S 1859 Geology of the state of Panna, principally with reference to the diamond bearing deposits;Rec. Geol. Surv. India 33 261–314.

    Google Scholar 

  • Menzies M A and Wass S Y 1983 CO2 and LREE-rich mantle below eastern Australia: a REE and isotopic study of alkaline magmas and apatite-rich mantle xenoliths from the Southern Highlands Province, Australia;Earth Planet. Sci. Lett. 65 287–302.

    Google Scholar 

  • Merh S 1952 Further study of the Majhgawan diamond mine, Panna state, Central India;J. Geol. Min. Met. Soc. India 24 125–132.

    Google Scholar 

  • Middlemost E A K and Paul D K 1984 Indian kimberlites and genesis of kimberlite;Chem. Geol. 47 249–260.

    Google Scholar 

  • Mishra D C, Lakshman G, Rao M B S V and Gupta S B 1995 Analysis of the gravity-magnetic data around NagaurJhalawar geotransect;Geol. Soc. India Memoir 31 345–351.

    Google Scholar 

  • Mitchell R H 1986Kimberlites: Mineralogy, Geochemistry and petrology, (New York: Plenum Press) 442.

    Google Scholar 

  • Mitchell R H 1995aKimberlites, orangeites and related rocks; Plenum Press, New York, 406.

    Google Scholar 

  • Mitchell R H 1995b Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproite magmas;J. Petrol. 36 1455–1474.

    Google Scholar 

  • Mitchell R H and Bergman S C 1991Petrology of lamproites, Plenum Press, New York, 447.

    Google Scholar 

  • Mitra N D 1996 Some problems of Vindhyan geology;Geol. Soc. India Memoir 36 1–4.

    Google Scholar 

  • Moore R O, Gurney J J, Griffin W L and Shimizu N 1991 Ultra-high pressure garnet inclusions in Monastery diamonds: trace element abundance patterns and conditions of origin;Eur. J. Mineral. 3 213–230.

    Google Scholar 

  • Mukherjee A, Rao K S, Bandyopadhyay D and Roy G 1997 Chemistry of garnet and ilmenite from Majhgawan diamondiferous pipe, Panna districtvis-à-vis diamond potential and preservation;J. Geol. Soc. India 50 441–448.

    Google Scholar 

  • Murphy D T, Collerson K D and Kamber B S 2002 Lamproites from Gaussberg, Antarctica: Possible Transition Zone Melts of Archaean Subducted Sediments;J. Petrol. 43 981–1001.

    Google Scholar 

  • Naqvi S M and Rogers J J W 1987Precambrian Geology of India; Oxford Monographs on Geology and Geophysics6 223.

  • Nowell G M, Pearson D G, Bell D R, Carlson R W, Smith C B, Kempton P D and Noble S R 2004 Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions;J. Petrol. 45 (8) 1583–1612.

    Google Scholar 

  • Paul D K 1979 Isotopic composition of Strontium in Indian kimberlites;Geochim. Cosmochim. Acta 43 389–394.

    Google Scholar 

  • Paul D K 1991 Indian kimberlites and lamprophyres: Mineralogical and chemical aspects;J. Geol. Soc. India 37 221–238.

    Google Scholar 

  • Paul D K, Rex D C and Harris P G 1975a Chemical characteristics and K-Ar ages of Indian kimberlites;Geol. Soc. Amer. Bull. 86 364–366.

    Google Scholar 

  • Paul D K, Potts P J, Gibson I L and Harris P G 1975b Rare earth abundances in Indian kimberlites;Earth Planet. Sci. Lett. 25 151–158.

    Google Scholar 

  • Peacock S M 1990 Fluid processes in subduction zones;Science 248 329–337.

    Google Scholar 

  • Prasad B 1976 Volcanic activity during Lower Vindhyan Period, Chittorgarh dist., Rajasthan;Ind. Mineral. 30 (4) 73–75.

    Google Scholar 

  • Prasad B 1981 A review of the Vindhyan Super Group in South-eastern Rajasthan;Geol. Surv. India Misc. Publ. 50 31–40.

    Google Scholar 

  • Prasad B 1984 Geology, sedimentation and palaeogeography of the Vindhyan Super Group, S.E. Rajasthan;Geol. Surv. India Memoir 116 (1) 1–107.

    Google Scholar 

  • Ravi Shanker, Nag S, Ganguly A, Absar A, Rawat B P and Singh G S 2001 Are Majhgawan-Hinota pipe rocks truly Group — I kimberlite?;Proc. Ind. Acad. Sci. (Earth Planet. Sci.) 110 (1) 63–76.

    Google Scholar 

  • Ravi Shanker, Nag S and Rawat B P 2002 Nomenclature problems in kimberlites — A case study from Majhgawan, Panna district, Madhya Pradesh, India;Proc. Int. Conf. on Diamonds and Gemstone (SAEEG). Raipur, Chattisgarh, pp. 119-122.

  • Ray J S, Veizer J and Davis W J 2003 C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Super Group, India: age, diagenesis, correlations and implications for global events;Precamb. Res. 121 103–140.

    Google Scholar 

  • Raza M, Casshyap S M and Khan A 2001 Accretionary Lapilli from the Basal Vindhyan volcanic sequence, south of Chittaurgarh, Rajasthan and their implication;J. Geol. Soc. India 57 77–82.

    Google Scholar 

  • Raza M, Casshyap S M and Khan A 2002 Geochemistry of Mesoproterozoic Lower Vindhyan shales from Chittaurgarh, Southeastern Rajasthan and its bearing on source rock composition, palaeoweathering conditions and tectono-sedimentary environments;J. Geol. Soc. India 60 505–518.

    Google Scholar 

  • Ringwood A R, Kesson S E, Hibberson W and Ware N 1992 Origin of kimberlites and their related magmas;Earth Planet. Sci. Lett. 113 521–538.

    Google Scholar 

  • Rock N M S 1991Lamprophyres, Blackie and Sons Ltd., Glasgow 285.

    Google Scholar 

  • Rock N M S and Paul D K 1989 “Lamprophyres”, “lamproites” and “kimberlites” in India: a bibliography and preliminary reappraisal;Geol. Soc. India Memoir 15 291–311.

    Google Scholar 

  • Roy A and Devarajan M K 2000 A reappraisal of the stratigraphy and tectonics of the Proterozoic Mahakoshal belt, Central India. In: Precambrian crust in eastern and central India. UNESCO-IUGS-IGCP-368;Geol. Surv. India Spec. Publ. 17 79–97.

    Google Scholar 

  • Roy A and Hanuma Prasad M 2001 Precambrian of Central India: a possible tectonic model;Geol. Surv. India Spec. Publ. 64 177–197.

    Google Scholar 

  • Rudnick R. L, McDonough W F and Chappell B W 1993 Carbonatite metasomatism in northern Tanzanian mantle: petrographic and geochemical characteristics;Earth Planet. Sci. Lett. 114 463–475.

    Google Scholar 

  • Scott B H 1979 Petrogenesis of kimberlites and associated potassic lamprophyres from central west Greenland; In:Kimberlites, pipes and diamonds: their geology, petrology and geochemistry (eds) Boyd F R and Meyer H O A American Geophysical Union, Washington1 190-225.

  • Scott-Smith BH 1989 Lamproites and kimberlites in India;Neus Jahrb. Mineral. Abh. 161 (2) 193–225.

    Google Scholar 

  • Scott-Smith B H, Skinner E M W and Loney P E 1989 The Kapamba lamproites of the Luangwa valley, eastern Zambia;Geol. Soc. Australia Spec. Publ. 14 189–205.

    Google Scholar 

  • Scott-Smith B H 1992 Kimberlites and lamproites: compared and contrasted;Proc. Int. Round Table Conf. On Diamond Expl. Mining (26 & 27 Nov., New Delhi) (unpaginated).

  • Scott-Smith B H and Skinner E M W 1984 Diamondiferous lamproites;J. Geol. 92 433–438.

    Google Scholar 

  • Sinor K P 1930 The Diamond Mines of Panna state in Central India;The Times of India Press, Bombay 189.

  • Skinner E M W 1989 Contrasting Group I and II kimberlite petrology: Towards a genetic model for kimberlites;Geol. Soc. Australia Spec. Publ. 14(1) 528–544.

    Google Scholar 

  • Skinner E M W, Clement C R, Gurney J J, Apter D B and Hatton C J 1992 The distribution and tectonic setting of Southern African kimberlites;Russ. Geol. Geophys. 33 26–31.

    Google Scholar 

  • Skinner E M W, Viljoen K S, Clarke T C and Smith C B 1994 The petrography, tectonic setting and emplacement ages of kimberlites in the south Western border region of the Kaapvaal craton, Prieska area; In:Kimberlites, related rocks and mantle xenoliths (eds) Meyer H O A and Leonardos O H,CPRM Spec. Publ. IA 80–97.

  • Smith C B 1983 Pb, Sr and Nd isotopic evidences for sources of southern African Cretaceous kimberlites;Nature 304 51–54.

    Google Scholar 

  • Smith C B, Allsopp H L, Kramers J D, Hutchinson G and Roddick J C 1985 Emplacement ages of Jurassic-Cretaceous South African kimberlites by the Rb-Sr method on phlogopite and whole-rock samples;Trans. Geol. Soc. South Africa 88 249–266.

    Google Scholar 

  • Smith J V, Breunscholtz R and Dawson J B 1978 Chemistry of micas from kimberlites and xenoliths — I micaceous kimberlites;Geochim. Cosmochim. Acta 42 959–971.

    Google Scholar 

  • Soni M K, Chakravorty S and Jain V K 1987 Vindhyan Super Group — a review;Geol. Soc. India Memoir 6 87–138.

    Google Scholar 

  • Soni M K, Jha D K, Tiwari M, Singh A N, Agasty A and Pimprikar S D (2002) Geochemical prospecting for kimberlite in Panna diamond belt, M.P. 2002 Geochemical prospecting for kimberlite in Panna diamond belt, M.P;Proc. Int. Conf. on Diamonds and Gemstone (SAEEG) Raipur, Chattisgarh, pp.110-111.

  • Spriggs A J 1988An isotopic and geochemical study of kimberlites and associated alkaline rocks from Namibia; Unpublished Ph.D. thesis, University of Leeds, UK.

    Google Scholar 

  • Tainton K M and McKenzie D 1994 The generation of kimberlites, lamproites and their source rocks;J. Petrol. 35 787–817.

    Google Scholar 

  • Tainton K M 1992The petrogenesis of Group-2 kimberlites and lamproites from the Northern Cape province, South Africa, Unpublished Ph.D Thesis, Cambridge University, UK.

    Google Scholar 

  • Taylor W R, Tompkins L A and Haggerty S E 1994 Comparative geochemistry of West African kimberlites: evidence for a micaceous kimberlite end member of sub-lithospheric origin;Geochim. Cosmochim. Acta 58 4017–4037.

    Google Scholar 

  • Thompson R N, Morrison M A, Hendry G L and Parry S J 1984 An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach;Phil. Trans. Roy. Soc. London A310 549–590.

    Google Scholar 

  • Thompson R N, Leat P T, Morrison M A, Hendry G L and Gibson S A 1990 Strongly potassic mafic potassic mafic magmas from lithospheric mantle sources during continental extension and heating: evidence from Miocene minettes of NW Colarado, USA;Earth Planet. Sci. Lett. 98 139–153.

    Google Scholar 

  • Venkataraman K 1960Quart. J. Geol. Min. Met. Soc. India 32 (1) 1–15.

    Google Scholar 

  • Wagner P A 1914The diamond fields of South Africa; Transvaal Leader, Johannesburg, South Africa, pp. 355

  • Watson E B, Brenan J M and Baker D R 1990 Distribution of fluids in the continental mantle; In:Continental mantle, (ed.) Menzies M A,Oxford Monographs on Geology and Geophysics 16 111-122.

  • Wilson M, Rosenbaum J M, Dunworth E A 1995 Melilitites: partial melts of the thermal boundary layer?;Contrib. Mineral. Petrol. 119 181–196.

    Google Scholar 

  • Woolley A R, Bergman S C, Edgar A D, Le Bas M J, Mitchell R H, Rock N M S and Scott-Smith B H 1996 Classification of lamprophyres, lamproites, kimberlites and the kalsilitic, melilitic and leucitic rocks;Can. Mineral. 34 175–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalapathi Rao, N.V. Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan and Hinota, Panna area, central India: Key to the nature of sub-continental lithospheric mantle beneath the Vindhyan basin. J Earth Syst Sci 115, 161–183 (2006). https://doi.org/10.1007/BF02703032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703032

Keywords

Navigation