Skip to main content
Log in

Current density limitation and diffusion boundary layer calculation using CFD method

  • Research Summary
  • Copper Electrodeposition
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The knowledge of limiting current density and thickness of diffusion boundary layer is particularly important in improving space-time-yield of electrolysis and especially of high current-density electrolysis. Both natural and forced convection of electrolyte flow are considered in the presented computational fluid dynamics model for calculation of these values. Natural convection is modeled by implementation of a source term at the cathode surface for copper concentration according to Faraday’s law, which allows calculation of electrolyte density for each volume cell of the grid. Forced convection is considered as flow of electrolyte through the cell generated by electrolyte inlet and outlet. By variation of current density, the limiting current density can be calculated with a copperion concentration of zero at the cathode surface after reaching the steady-state conditions in electrolyte. Time dependency of diffusion boundary layer thickness is shown for a chosen cell geometry. Literature data and measured and calculated values of both quantities are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Lbl, ⪙Die Rolle des elektrolytischen Stoff- und Ladungstransportes in der Elektrometallurgie,”Erzmetall, 22 (1969), pp. 87–98.

    Google Scholar 

  2. C.H. Hamann, and W. Vielstich, eds.,Elektrochemie (Weinheim, Germany: Wiley-VCH, 1998), pp. 177–182.

    Google Scholar 

  3. S. Patankar, ed.,Numerical Heat Transfer and Fluid Flow (New York: McGraw-Hill, 1980).

    Google Scholar 

  4. Fire® Manual, Version 6 (Graz, Austria: AVL, 1995).

  5. A. Lackner, “Strömungssimulation in verschiedenen Reaktoren der NE-Metallurgie” (Ph.D. thesis, University of Leoben, 1996).

  6. A. Filzwieser, “Modellierung der kathodennahen VorgÄnge in der Kupferelektroyse” (Ph.D. thesis, University of Leoben, 2000).

  7. D.C. Price and W.G. Davenport, “Densities, Electrical Conductivities and Viscosities of CuSO4/H2SO4 Solutions in the Range of Modern Electrorefining and Electrowinning Electrolytes,”Metall, Trans., 11B (1980), pp. 159–163.

    CAS  Google Scholar 

  8. A. Filzwieser et al., “dEinsatz bipolarer Elektroden für die Hochstromelektrolyse bei der Kupfergewinnung,” BHM, 144 (1999), pp. 13–18.

    CAS  Google Scholar 

  9. R. Meyer, “Kupferfolienherstellung bei Stromdichten >1000 A/m2” (Master thesis, University of Leoben, 2000).

  10. G. Hanko, K. Hein, and A. Filzwieser, “Visualisierung und Quantifizierung der StrömungsverhÄltnisse in einer Kupfergewinnungselektrolyse,”Erzmetall, 52 (1999), pp. 226–235.

    CAS  Google Scholar 

  11. D. Schab and K. Hein, “Problems of Anodic and CathodicMassTransfer in Copper Refining Electroylsis with Increasing Current Density,”Canad. Metall. Quart, 31 (1992), pp. 173–179.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filzwieser, A., Hein, K. & Mori, G. Current density limitation and diffusion boundary layer calculation using CFD method. JOM 54, 28–31 (2002). https://doi.org/10.1007/BF02701653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02701653

Keywords

Navigation