Skip to main content
Log in

Comparison of mesoporous aluminas synthesized using stearic acid and its salts

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mesoporous aluminas, X-MAs (X=Na, Mg, and Ni) were prepared using stearic acid and its salts as templates. Sodium stearate, which is more soluble than stearic acid, was an effective template for preparing Na-MA. The characteristics of Mg-MA prepared using cost-effective template (magnesium stearate) were similar to those for an MA prepared using stearic acid. Mg ions were easily exchanged with Ni ion by treatment with an acid or base. Thus, nickel incorporated alumina (Ni-MA) could be directly prepared using nickel stearate, which was acting as a chemical template and a metal source. The MA and X-MAs had a similar pore size (3.6 nm), a narrow pore size distribution (DFWHM∼1 nm), and a γ-alumina phase. In addition, bimetallic Ni-MAn catalysts were prepared and applied to the partial oxidation methane as a potential application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagshaw, S.A. and Pinnavaia, T. J., “Mesoporous Alumina Molecuar Sieves,”Angew. Chem. Int. Ed.,35(10), 1102 (1996).

    Article  CAS  Google Scholar 

  • Cabrera, S., Haskouri, J. E., Alamo, J., Beltran, A., Mendioroz, S., Marcos, M.D. and Amoros, P., “Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Size,”Adv. Meter.,11(5), 379 (1999).

    Article  CAS  Google Scholar 

  • Chokkaram, S., Srinivasan, R., Milburn, D. R. and Davis, B.H., “Conversion of 2-Octanol over Nickel-Alumina, Cobalt-Alumina, and Alumina Catalysts,”J. Mol. Catal. A,121(2–3), 157 (1997).

    Article  CAS  Google Scholar 

  • Corma, A., “From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis,”Chem. Rev.,97(6), 2373 (1997).

    Article  CAS  Google Scholar 

  • Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P.M., Schuth, F. and Stucky, G.D., “Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials,”Nature,368(24), 317 (1994).

    Article  CAS  Google Scholar 

  • Kim, C., Kim, Y., Kim, P. and Yi, J., “Synthesis of Mesoporous Alumina Using a Cost-Effective Template,”Korean J. Chem. Eng.,20(6), 1142 (2003a).

    CAS  Google Scholar 

  • Kim, P., Kim, Y., Kim, C., Kim, H., Park, Y., Lee, J.H., Song, I. K. and Yi, J., “Synthesis and Characterization of Mesoporous Alumina as a Catalyst Support for Hydrodechlorination of 1,2-Dichloropropane: Effect of Catalyst Preparation Method,”Catal. Lett.,89(3–4), 185 (2003b).

    Article  CAS  Google Scholar 

  • Kim, P., Kim, H., Kim, Y., Song, I.K. and Yi, J., “Synthesis and Characterization of Mesoporous Alumina with Nickel Incorporated for Use in the Partial Oxidation of Methane into Synthesis Gas,”Appl. Catal. A,272(1-2), 157 (2004a).

    Article  CAS  Google Scholar 

  • Kim, Y., Lee, B. and Yi, J., “Synthesis of Mesoporous γ-Alumina through Pre- and Post-Hydrolysis Methods,”Korean J. Chem. Eng.,19(5), 908 (2002).

    CAS  Google Scholar 

  • Kim, Y., Kim, C., Choi, J.W., Kim, P. and Yi, J., “Synthesis of Mesoporous γ-Aluminas of Controlled Pore Properties Using Alkyl Carboxylate Assisted Method,”Stud. Surf. Sci. Catal.,146, 209 (2003c).

    Article  CAS  Google Scholar 

  • Kim, Y., Kim, P., Kim, C. and Yi, J., “A Novel Method for Synthesis of a Ni/Al2O3 Catalyst with a Mesoporous Structure Using Stearic Acid Salts,”J. Mater. Chem.,13(9), 2353 (2003d).

    Article  CAS  Google Scholar 

  • Kim, Y., Kim, C., Choi, I., Rengaraj, S. and Yi, J., “Arsenic Removal Using Mesoporous Alumina Prepared via a Templating Method,”Environ. Sci. Technol.,38(3), 924 (2004b).

    Article  CAS  Google Scholar 

  • Kim, Y., Kim, C. and Yi, J., “Synthesis of Tailored Porous Alumina with A Bimodal Pore Size Distribution,”Mater. Res. Bull.,39(13), 2103 (2004c).

    Article  CAS  Google Scholar 

  • Kim, Y. and Yi, J., “Advances in Environmental Technologies via the Application of Mesoporous Materials,”J. Ind. Eng. Chem.,10(1), 41 (2004).

    Google Scholar 

  • Sohlberg, K., Pantelides, S. T. and Pennnycook, S. J., “Surface Reconstruction and the Difference in Surface Acidity between γ- and η-Alumina,”J. Am. Chem. Soc.,123(1), 26 (2001).

    Article  CAS  Google Scholar 

  • Valange, S., Cuth, J.-L., Kolenda, F., Lacombe, S. and Gabelica, Z., “Synthesis Strategies Leading to Surfactant-Assisted Aluminas with Controlled Mesoporosity in Aqueous Media,”Micropor. Mesopor. Mat.,35-36, 597 (2000).

    Article  CAS  Google Scholar 

  • Wolverton, C. and Hass, K.C., “Phase Stability and Structure of Spinel-Based Transition Aluminas,”Phys. Rev. B,63, 024102 (2001).

    Article  Google Scholar 

  • Yada, M., Hiyoshi, H., Ohe, K., Machida, M. and Kijima, T., “Synthesis of Aluminum-Based Surfactant Mesophases Morphologically Controlled through a Layer to Hexagonal Transition,”Inorg. Chem.,36(24), 5565 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongheop Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kim, P., Kim, C. et al. Comparison of mesoporous aluminas synthesized using stearic acid and its salts. Korean J. Chem. Eng. 22, 321–327 (2005). https://doi.org/10.1007/BF02701504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02701504

Key words

Navigation