Skip to main content
Log in

An algorithm for optimal design of chemical structures from molecular fragments

  • Published:
Foundations of Physics Letters

Abstract

An approach to molecular design is suggested. The procedure involves three main steps: forming a basic set of compounds possessing the given property;dividing the molecular graphs (MG) of these compounds into fragments;constructing a MG in which the environment of fragments is similar to that in basic compounds. Optimality of an MG is defined in terms of the properties of substituents which are relevant to molecular recognition (lipophilicity, molar refraction, etc.). An effective algorithm is developed for design of MG with an optimal environment of each submolecule. An example is given of compound design from the structural fragments of several nucleoside inhibitors of the inverse transcriptase of HIV-1. Using this algorithm provides a compromise between the similarity and diversity of chemical structures within the given set of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Skvortsova, I. V. Stankevich, and N. S. Zefirov,Zh. Strukt. Khim.,33, 99–104 (1992).

    Google Scholar 

  2. N. V. Vityuk,Zh. Fiz. Khim.,67, 2019–2022 (1993).

    Google Scholar 

  3. L. B. Kier and L. H. Hall,Quant. Struct., Act. Relat.,12, 383–388 (1993).

    Article  Google Scholar 

  4. R. D. Brown, G. Jones, P. Willet, and R. C. Glen,J. Chem. Inf. Comput. Sci.,34, 63–70 (1994).

    Article  Google Scholar 

  5. J.-E. DuBois, G. Carrier, and A. Panaye, omJ. Chem. Inf. Comput. Sci.,31, 574–578 (1991).

    Article  Google Scholar 

  6. Y. C. Martin,J. Med. Chem.,35, 2145–2154 (1992).

    Article  Google Scholar 

  7. T. E. Moock, D. R. Henry, A. G. Ozkabak, and M. Alamgir,J. Chem. Inf. Comput. Sci.,34, 184–189 (1994).

    Article  Google Scholar 

  8. B. D. Christie, D. R. Henry, W. T. Wipke, and T. E. Moock,Tetrahedron Comput. Methodol.,3, 653–664 (1990).

    Article  Google Scholar 

  9. S. H. Rotstem and M. A. Murcko,J. Comput.-Aided Mol. Des.,7, 23–43 (1993).

    Article  ADS  Google Scholar 

  10. R. A. Lewis, D. C. Roe, C. Huang, et al.,J. Mol. Graph.,10, 66–78, 106 (1992).

    Article  Google Scholar 

  11. M. B. Eisen, D. C. Wiley, M. Karplus, and R. E. Hubbard,Proteins: Struct., Funct., Genet.,19, 199–221 (1994).

    Article  Google Scholar 

  12. V. J. Gillet, A. P. Johnson, P. Mata, and S. Sike,Tetrahedron Comput. Methodol.,3, 681–696 (1990).

    Article  Google Scholar 

  13. J. B. Moon and J. W. Howe,Proteins: Struct, Funct., Genet.,11, 314–328 (1991).

    Article  Google Scholar 

  14. Z. Simon,Angew. Chem., Int. Ed. Engl.,13, 719–727 (1974).

    Article  Google Scholar 

  15. A. I. Khlebnikov,Khim.-Farm. Zh.,31, No. 3, 41–48 (1997).

    Google Scholar 

  16. V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, and R. I. Tyshkevich,Lectures in Graph Theory [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  17. M. I. Stankevich, I. V. Stankevich, and N. S. Zefirov,Usp. Khim.,57, 337–366 (1988).

    Article  Google Scholar 

  18. A. Mertens, H. Zilch, B. Konig, et al.,J. Med. Chem.,36, 2526–2535 (1993).

    Article  Google Scholar 

  19. M. Cushman, W. M. Golebiewski, L. Graham, et al., omJ. Med. Chem.,39, 3217–3227 (1996).

    Article  Google Scholar 

  20. C. Ahgren, K. Backro, F. W. Bell, et al.,Antimicrob. Agents Chemother.,39, 1329–1335 (1995).

    Article  Google Scholar 

  21. K. Ijichi, M. Fujiwara, H. Nagano, et al,Antiviral Res.,31, 87–94 (1996).

    Article  Google Scholar 

  22. R. Gussio, N. Pattabiraman, D. W. Zaharevitz, et al.,J. Med. Chem.,39, 1645–1650 (1996).

    Article  Google Scholar 

  23. A. K. Ghose and G. M. Crippen, omJ. Med. Chem.,28, 333–346 (1985).

    Article  Google Scholar 

  24. A. I. Khlebnikov,Khim.-Farm. Zh.,28, No. 11, 32–35 (1994).

    Google Scholar 

  25. A. I. Khlebnikov,Zh. Strukt. Khim.,36, 1083–1087 (1995).

    Google Scholar 

  26. G. M. Crippen,J. Med. Chem.,22, 988–997 (1979).

    Article  Google Scholar 

  27. V. E. Kuzmin and S. V. Krutius,Khim.-Farm. Zh.,20, No. 7, 791–794 (1986).

    Google Scholar 

  28. R. D. Cramer, D. E. Patterson, and J. D. Bunce,J. Am. Chem. Soc.,110, 5959–5967 (1988).

    Article  Google Scholar 

  29. P. G. DeBenedetti, M. C. Menziani, F. Fanelli, and M. Cicchi,J. Mol. Struct. (Theochem),285, 147–153 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromZhurnal Struktumoi Khimii, Vol. 39, No. 4, pp. 698–707, July–August, 1998.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebnikov, A.I. An algorithm for optimal design of chemical structures from molecular fragments. Found Phys Lett 15, 567–574 (2002). https://doi.org/10.1007/BF02701388

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02701388

Keywords

Navigation