Skip to main content
Log in

Structural instability of one-dimensional systems as a physical principle underlying the functioning of molecular electronic devices

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural instability of one-dimensional conducting molecular systems is suggested as a physical principle underlying the operation of molecular electronic devices, and its potential application in such devices is analyzed. The theoretical basis of this effect is discussed. The conditions and parameters determining its characteristics are analyzed from the viewpoint of molecular electronics. Data on one-dimensional molecular structures which are of interest for the design of electronic devices are given. Peculiarities of structural instability are discussed, and potential static and dynamic control over the conductivity of one-dimensional systems is analyzed. Molecular structures are given as examples of hypothetical electronic devices. The possibilities and prospects of this approach in the development of molecular electronics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aviram,Int. J. Quant. Chem.,42, 1615–1624 (1994).

    Article  Google Scholar 

  2. D. Bloor,Phys. Scr.,39, 380–385 (1991).

    Article  Google Scholar 

  3. C. Joachim and J. P. Launay,J. Mol. Electron.,6, 37–50 (1990).

    Google Scholar 

  4. J.-M. Lehn,Supramolecular Chemistry. Concepts and Perspectives, VCH Verlagsgesselschaft, Weinheim (1995).

    Google Scholar 

  5. S. M. Repinskii,Priroda, No. 5, 8–16 (1997).

  6. I. G. Rambidi,Poverkhnost,8, 5–30 (1986).

    Google Scholar 

  7. Yu. H. Krieger,Zh. Strukt. Khim.,34, No. 6, 37–50 (1993).

    Google Scholar 

  8. Yu. V. Gulyaev, V. B. Sandomirskii, A. A. Sukhanov, et al.,Usp. Fiz. Nauk,144, 475–496 (1984).

    Google Scholar 

  9. R. W. Keyes,Science,195, 1230–1235 (1977).

    Article  Google Scholar 

  10. H. Foll,Electr. Technol,26, 23–34 (1993).

    Google Scholar 

  11. E. Corcoran,Sci. Am.,263, 72–95 (1990).

    Article  Google Scholar 

  12. T. A. Fulton and G. J. Dolan,Phys. Rev. Lett.,59, 109–112 (1987).

    Article  Google Scholar 

  13. K. K. Likharev and T. Claeson,Sci. Am.,266, 50–55 (1992).

    Google Scholar 

  14. A. N. Korotkov, R. H. Chen, and K. K. Likharev,J. Appl. Phys.,78, 2520–2530 (1995).

    Article  CAS  Google Scholar 

  15. D. V. Averin and K. K. Likharev, in:Single Charge Tunneling, H. Grabert and M. H. Devoret (eds.), Plenum, New York (1992), p. 311.

    Google Scholar 

  16. C. M. Fischer, M. Burghard, S. Roth, et al.,Europhys. Lett.,28, No. 2, 129–134 (1994).

    Article  CAS  Google Scholar 

  17. R. Notzel et al.,Solid State Electron.,40, 777–782 (1996).

    Article  CAS  Google Scholar 

  18. R. P. Feynman,Miniaturization, H. D. Gilbert (ed.), New York (1961), pp. 282–296.

  19. R. P. Feynman,Usp. Fiz. Nauk,149, 671–688 (1986).

    Google Scholar 

  20. F. L. Carter,J. Vac. Sci. Technoi,Bi(4), 959–968 (1983).

    Article  Google Scholar 

  21. F. L. Carter,Phys. Rev. D,132, 175–182 (1984).

    Google Scholar 

  22. S. Roth,Phys. Scr.,29, 206–208 (1989).

    Article  Google Scholar 

  23. S. L. Gilat, S. H. Kawai, J.-M. Lehn,J. Chem. Soc., Chem. Commun., 1439 (1993).

  24. Optical Probing of Single Molecules, T. Basche, W. E. Moerner, M. Orrit, and U. P. Wild (eds.), VCH, Weinheim (1996).

    Google Scholar 

  25. A. Aviram and M. A. Rathen,Chem. Phys. Lett.,29, 277–282 (1974).

    Article  CAS  Google Scholar 

  26. A. Aviram,J. Am. Chem. Soc.,110, 5687–5692 (1988).

    Article  CAS  Google Scholar 

  27. R. E. Peierls,Quantum Theory of Solids, Clarendon, Oxford (1955), p. 360

    Google Scholar 

  28. A. G. MacDiarmid, J. M. Warakamski, and F. E. Kavasz,Phys. Rev.,B28, 6937–6944 (1983).

    Google Scholar 

  29. Ju. H. Krieger,Extended Abstracts from the 3rd European Conference on Molecular Electronics, Leuven (1996), pp. 73–76.

  30. L. P. Gorkov,Usp. Fiz. Nauk,144, 381–413 (1984).

    CAS  Google Scholar 

  31. A. I. Budzin and L. N. Bulaevskii,ibid., 415–437.

    Google Scholar 

  32. W. A. Little,Phys. Rev.,134A, 1416–1424 (1964).

    Article  Google Scholar 

  33. L. N. Bulaevskii,Usp. Fiz. Nauk,115, 261–300 (1975).

    Google Scholar 

  34. D. Jerome and H. J. Schulz,Adv. Phys.,31, 299–490 (1982).

    Article  CAS  Google Scholar 

  35. L. N. Bulaevskii and M. V. Sadovskii,Fiz. Tverd. Tela,16, 1159–1164 (1974).

    CAS  Google Scholar 

  36. E. V. Kholopov, N. K. Moroz, Yu. H. Krieger, et al.,Zh. éksp. Teor. Fiz.,84, 1091–1096 (1982).

    Google Scholar 

  37. K. J. Donovan and E. Q. Wilson,J. Phys.,12, 48–54 (1979).

    Google Scholar 

  38. A. J. Heeger, S. Kivelson, J. R. Schrieffer, et al.,Rev. Mod. Phys.,60, 781–850 (1988).

    Article  CAS  Google Scholar 

  39. H. J. Schulz, in:Low Dimensional Conductors and Superconductors, NATO ASI Ser., Vol. 155, D. Jerome and L. G. Caron (eds.) (1987), pp. 95–112.

  40. J. Simon and J.-J. Andre,Molecular Semiconductors, Berlin (1985).

  41. V. M. Skorobogatov and I. V. Krivoshei,Usp. Khim.,57, 832–855 (1988).

    CAS  Google Scholar 

  42. A. J. Heeger and A. G. MacDiarmid,Faraday Discuss. Chem. Soc.,88, 361–383 (1989).

    Article  Google Scholar 

  43. Jr. C. R. Fincher, C. E. Chen, A. J. Heeger, et al.,Phys. Rev. Lett.,48, 100–104 (1982).

    Article  CAS  Google Scholar 

  44. S. Roth,Synth. Met.,34, 617–622 (1989).

    Article  CAS  Google Scholar 

  45. A. C. MacDiarmid, J. C. Chiang, and A. F. Richter,ibid.,18, 285–290 (1987).

    Article  CAS  Google Scholar 

  46. G. A. Vinogradov,Usp. Khim.,53, 135–175 (1984).

    CAS  Google Scholar 

  47. M. Schott and G. Wegner,Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2, D. S. Chemla and J. Zyss (eds.), Academic Press (1987).

  48. E. N. Gur’yanova, I. P. Goldshtein, and I. P. Romm,Donor-Acceptor Bond [in Russian], Khimiya, Moscow (1973).

    Google Scholar 

  49. L. I. Gorkov,Usp. Fiz. Nauk,144, 381–413 (1984).

    CAS  Google Scholar 

  50. A. I. Budzin and L. N. Bulaevskii,ibid., 415–437.

    Google Scholar 

  51. L. R. Melby et al.,J. Am. Chem. Soc.,84, 3374–3387 (1962).

    Article  CAS  Google Scholar 

  52. W. I. Siemens, P. E. Bierstedt, and R. G. Kepler,J. Chem. Phys.,39, 3523–3539 (1963).

    Article  Google Scholar 

  53. T. E. Philips, T. J. Kisternmacher, J. P. Ferraris, et al.,Chem. Commun.,1973, 471–472 (1973).

    Google Scholar 

  54. C. J. Fritchie,Acta Crystallogr.,20, 892–903 (1966).

    Article  CAS  Google Scholar 

  55. I. F. Shchegolev,Phys. Status Solidi (a),12, 9–45 (1972).

    Article  CAS  Google Scholar 

  56. R. Moret, J. P. Pouget, R. Comes, et al.,J. Phys.,CN3, 957–962 (1983).

    Google Scholar 

  57. N. Thorup, G. Rindorf, H. Soling, et al.,Acta Crystallogr.,B37, 1236–1240 (1981).

    CAS  Google Scholar 

  58. J. S. Miller and A. J. Epstein,Prog. Inorg. Chem.,20, 1–151 (1976).

    Article  CAS  Google Scholar 

  59. M. A. Butler and H. J. Guggenheim,Bull. Am. Phys. Soc., II,19, 335 (1974).

    Google Scholar 

  60. E. Suito and N. Uyeda,J. Phys. Chem.,84, 3223–3230 (1980).

    Article  Google Scholar 

  61. C. F. van Nostrum and R. J. M. Notle,Chem. Commun.,21, 3285–3292 (1996).

    Google Scholar 

  62. H. Segawa, F. P. Wu, N. Nakayama, et al.,Synth. Met.,71, 2151–2154 (1995).

    Article  CAS  Google Scholar 

  63. J. Rouxel, in:Intercalated Layered Materials, Vol. 6, F. A. Levy (ed.) (1979), pp. 201–250.

  64. V. E. Fedorov,Chalcogenides of High-Melting Transition Metals. Quasione-Dimensional Compounds [in Russian], Nauka, Novosibirsk (1988).

    Google Scholar 

  65. M. J. Rice and E. J. Mele,Solid State Commun.,35, 487–491 (1980).

    Article  CAS  Google Scholar 

  66. M. Rumi, A. Kiehl, and G. Zerbi,Chem. Phys. Lett.,231, 70–74 (1994).

    Article  CAS  Google Scholar 

  67. S. Roth, H. Blier, and W. Pukacki,Faraday Discuss. Chem. Soc.,88, 223–233 (1989).

    Article  CAS  Google Scholar 

  68. Y. S. Lee and M. Kertesz,J. Chem. Phys.,88, 2609–2617 (1988).

    Article  CAS  Google Scholar 

  69. L. Rodriguez-Monge and S. Larson,J. Quant. Chem.,61, 847–857 (1997).

    Article  CAS  Google Scholar 

  70. J. L. Bredas, A. J. Heeger, and F. Wudl,J. Chem. Phys.,85, 4673–4678 (1986).

    Article  CAS  Google Scholar 

  71. G. Piccito, R. Pucci, and P. J. Grout,Phys. Rev. B,43, 4224–4228 (1991).

    Article  Google Scholar 

  72. H. Fukuyama,J. Phys. Soc. Jpn.,61, 3452–3456 (1992).

    Article  CAS  Google Scholar 

  73. Y. Tokura, H. Okamoto, T. Koda, et al.,Phys. Rev. B,38, 2215–2218 (1988).

    Article  CAS  Google Scholar 

  74. Y. Iwasa, T. Koda, Y. Tokura, et al.,Appl. Phys. Lett.,55, 2111–2113 (1989).

    Article  CAS  Google Scholar 

  75. S. Koshihara, Y. Tokura, N. Sarukura, et al.,Synth. Met.,70, 1225–1226 (1995).

    Article  CAS  Google Scholar 

  76. K. Nakayama, L. Jiang, T. Ivoda, et al.,Jpn. J. Appl. Phys.,36, 3898–3902 (1997).

    Article  CAS  Google Scholar 

  77. J. U. von Schutz, D. Bauer, H. Wachtel, and H. C. Wolf,Synth. Met.,71, 2089–2090 (1995).

    Article  Google Scholar 

  78. S. I. Peredereeva, I. G. Orlov, and M. I. Cherkashin,Usp. Khim.,44, 602–621 (1975).

    CAS  Google Scholar 

  79. A. J. Heeger and A. G. MacDiarmid,Faraday Discuss. Chem. Soc.,88, 361–383 (1989).

    Article  Google Scholar 

  80. S. Roth,Synth. Met.,34, 617–622 (1989).

    Article  CAS  Google Scholar 

  81. A. J. Epstein,Bull. MRS,22, 16–23 (1997).

    CAS  Google Scholar 

  82. S. Stafstrom,Phys. Rev. B,43, 9158–9170 (1991).

    Article  Google Scholar 

  83. M. I. Salkola and S. A. Kivelson,Phys. Rev. B,50, 13962–13973 (1994).

    Article  CAS  Google Scholar 

  84. Yu. H. Krieger, G. V. Sikorskaya, and V. E. Fedorov,Zh. Strukt. Khim.,34, No. 6, 135–140 (1993).

    Google Scholar 

  85. A. R. Semenov, G. N. Chekhova, Yu. H. Krieger, et al.,ibid.,38, No. 5, 857–867 (1997).

    Google Scholar 

  86. Yu. H. Krieger, S. G. Kozlova, P. P. Samoilov, et al.,Fiz. Tverd. Tela,38, 583–587 (1986).

    Google Scholar 

  87. Yu. H. Krieger, S. G. Kozlova, and S. P. Gabuda,Phys. Status Solidi (b),158, 329–336 (1990).

    Article  Google Scholar 

  88. V. L Emery,J. de Phys.,44, C3-C977 (1983).

    Google Scholar 

  89. N. G. Parsonage and L. A. K. Staveley,Disorder in Crystals, Clarendon, Oxford (1986).

    Google Scholar 

  90. Yu. H. Krieger, N. F. Yudanov, I. K. Igumenov, and S. B. Vaschenko,Zh. Strukt. Khim.,34, No. 6, 152–156 (1993).

    Google Scholar 

  91. Yu. H. Krieger, S. B. Vaschenko, N. F. Yudanov, et al.,Extended Abstracts of the 2nd European Conference on Molecular Electronics, Germany (1994), pp. 131–132.

  92. S. B. Vaschenko, N. F. Yudanov, Yu. H. Krieger, et al.,Extended Abstracts of the 3rd European Conference on Molecular Electronics, Belgium (1996), pp. 290–294.

  93. H. A. Jahn and E. Teller,Proc. R. Soc. Lond. A,161, 220–235 (1937).

    Article  CAS  Google Scholar 

  94. I. B. Bersuker,John-Teller Effect and Vibronic Interactions in Modem Chemistry [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  95. I. B. Bersuker,Zh. Strukt. Khim.,29, No. 6, 3–8 (1988).

    CAS  Google Scholar 

  96. P. D. Wasserman,Neural Computing: Theory and Practice, Van Nostrand, New York (1989).

    Google Scholar 

  97. A. I. Galushkin,Synthesis of Multilayer Systems for Image Recognition [in Russian], Energiya, Moscow (1974).

    Google Scholar 

  98. M. V. Stepanov,Usp. Sovrem. Radioelektr.,2, 32–56 (1997).

    Google Scholar 

  99. A. Yu. Loskutov and A. S. Mikhailov,Introduction to Synergism [in Russian], Nauka, Moscow (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, Y.H. Structural instability of one-dimensional systems as a physical principle underlying the functioning of molecular electronic devices. J Struct Chem 40, 594–619 (1999). https://doi.org/10.1007/BF02700723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700723

Keywords

Navigation