Skip to main content
Log in

Anisotropy of crystal structure distortion in organic molecular crystals of drugs induced by hydrostatic compression

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Variation of the unit cell parameters of paracetamol and phenacetin as a function of hydrostatic pressure was studied by X-ray diffractometry in diamond anvils. At elevated pressure (4 GPa), the crystal structures undergo anisotropic distortion. The greatest compression was observed in the directions in which the molecules are linked by van der Waals forces alone. Compressibility of the structures in the direction of hydrogen bonds depends on the presence of other types of interaction and on molecular arrangement in the crystals. In the case of paracetamol, integrated compression of the structure led to its stretching in definite crystallographic directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hazen and L. Finger,Comparative Crystal Chemistry. Temperature, Pressure, Composition, and the Variation of Crystal Structure, Wiley, New York (1982).

    Google Scholar 

  2. H. Ahsbahs.Rev. Sci. Instrum.,55, 99–102 (1984).

    Article  CAS  Google Scholar 

  3. H. Ahsbahs.Prog. Cryst. Growth Charact..14, 263–302 (1987).

    Article  CAS  Google Scholar 

  4. H. Fujihisa. H. Fugie, K. Tatemura. and K. Shimamura,J. Phys. Chem. Sol.,56, 1439–1444 (1995).

    Article  CAS  Google Scholar 

  5. Y. Fujii.Proceedings of the 17th Congress of the International Union of Crystallography, Seattle. USA (1996). KY.NT.02. C-1.

    Google Scholar 

  6. M. Nishi. O. Fujita, J. Akimitsu, et al.,Phys. Rev.,B52, 6959–6966 (1995).

    Google Scholar 

  7. W. Rauw, H. Ahsbahs, M. A. Hitchman. et al.,Inorg. Chem.,35, No. 7, 1902–1911 (1996).

    Article  CAS  Google Scholar 

  8. W. B. Holzapfel,Proceedings of ECM-17. Lisboa, Portugal (1997). p. 6.

    Google Scholar 

  9. A. Katrusiak and R. J. Nelmes.J. Phys. C, Solid State Phys.,19, L765-L772 (1986).

    Article  CAS  Google Scholar 

  10. A. Katrusiak,Acta Crystallogr.,B46, 246–256 (1990).

    CAS  Google Scholar 

  11. A. Katrusiak.High Pressure Research,6, 155–167 (1991).

    Article  Google Scholar 

  12. A. Katrusiak,ibid., 265–275.

  13. A. Katrusiak,Cryst. Res. Technol.,26, No. 5, 523–531 (1991).

    Article  CAS  Google Scholar 

  14. A. Katrusiak,Acta Crystallogr.,B51, 873–879 (1995).

    CAS  Google Scholar 

  15. E. V. Boldyreva, H. Ahsbahs, and D. Yu. Naumov,Z. Krist. Suppl. Issue,11, 76 (1996).

    Google Scholar 

  16. E. V. Boldyreva, D. Yu. Naumov, and H. Ahsbahs,Zh. Strukt. Khim.,39, No. 3, 431–445 (1998).

    Google Scholar 

  17. E. V. Boldyreva, D. Yu. Naumov, and H. Ahsbahs,Acta Crystallogr.,B54, 798–808 (1998).

    CAS  Google Scholar 

  18. M. Haisa, S. Kashino, R. Kawai, and H. Maeda,ibid.,B32, 1283–1285 (1976).

    CAS  Google Scholar 

  19. D. Yu. Naumov, M. A. Vasilchenko. and J. A. K. Howard,ibid.,C54, 1283–1285 (1998).

    Google Scholar 

  20. U. Patel, T. C. Patel, and T. D. Singh,ibid.,C39, 1445–1447 (1983).

    Google Scholar 

  21. C. E. Weir. S. Block, and G. J. Piermarini,J. Res. Natl. Bur. Stand.,69C, 275–281 (1965).

    Google Scholar 

  22. R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block.Science.176, 284–285 (1972).

    Article  Google Scholar 

  23. R. Brüggemann, B. Müller, T. Debaerdemaeker, et al.,Program Complex for X-Ray Crystallography ULM, UniversitÄt Ulm, Ulm, Germany (1992).

    Google Scholar 

  24. L. Merrill and W. A. Bassett,Rev. Sci. Instrum.,45, 290–294 (1974).

    Article  Google Scholar 

  25. K. H. Mao and P. M. Beel,Carnegie Inst. Yearbook,79, 409–411 (1980).

    Google Scholar 

  26. H. Ahsbahs, R. Dorwarth, K. Holzer, and W. F. Kuhs,Z. Krist. Suppl.,7, 3–4 (1993).

    Google Scholar 

  27. A. Kutoglu.MDIF4, A Program for High-Pressure Data Collection with STOE Four-Circle Diffractometer, Marburg University (1997).

  28. A. Kutoglu,CRYMIS, A Fortran Program System, Internal report of the Institute of Mineralogy, Petrology, and Crystallography, Marburg University (1995).

  29. D. Yu. Naumov,ENVIRON — Computer Program for Crystal Structure Analysis, Novosibirsk State University (1994).

  30. T. Yagi,J. Phys. Chem. Sol.,39, 563–571 (1978).

    Article  CAS  Google Scholar 

  31. A. Jeffrey and W. Saenger,Hydrogen Bonding in Biological Structures, Springer, Berlin (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhtshneider, T.P., Boldyreva, E.V., Vasilchenko, M.A. et al. Anisotropy of crystal structure distortion in organic molecular crystals of drugs induced by hydrostatic compression. J Struct Chem 40, 892–898 (1999). https://doi.org/10.1007/BF02700697

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700697

Keywords

Navigation