Skip to main content
Log in

Elastic waves in prestressed bodies interacting with a fluid (survey)

  • Published:
International Applied Mechanics Aims and scope

Conclusion

The above survey of different studies and analysis of results obtained widiin the framework of linearized three-dimensional theory show that use of the given model makes it possible to account for fluid viscosity and initial stresses in elastic bodies. Both of these factors play a significant role in actual media. The model also permits determination of the effect of fluid viscosity and initial stresses on the wave processes in hydroelastic systems. The use of an approach based on representations of general solutions of linearized problems of aerohydroelasticity for bodies with uniform initial strains and a compressible viscous fluid makes it possible to obtain dispersion relations in a general form diat is invariant relative to different types of elastic potential and valid for arbitrary compressible and incompressible materials. The approach also allows researchers to study the main classes of problems encountered in practice, conduct numerical experiments, and use the results to find new properties, laws, and mechanical effects that are characteristic of the investigated wave processes and reflect the mutual effects of the fields of initial and dynamic stresses, as well as the interaction of elastic bodies with viscous fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Ainola and U. K. Nigul, “Wave processes in the deformation of elastic slabs and shells,” Izv. Akad. Nauk SSSR,14, No. 1, 3–63 (1965).

    MathSciNet  Google Scholar 

  2. R. Yu. Amenzade, “Propagation of a harmonic wave in a viscoelastic fluid inside a thick-walled linearly viscoelastic tube,” Izv. Akad. Nauk. Arm. SSR Mekh.,28, No. 5, 75–83 (1975).

    Google Scholar 

  3. S. Yu. Babich, A. N. Guz’, and A. P. Zhuk, “Elastic waves in bodies with initial stresses,” Prikl. Mekh.,15, No. 4, 3–23 (1979).

    MathSciNet  Google Scholar 

  4. V.M. Babich and I.A. Molotkov, “Mathematical methods in the theory of elastic waves,” Mekh. Deform. Tver. Tela, No. 10, 5–62 (1977).

  5. A. M. Bagno, “Propagation of small perturbations in a system composed of a prestressed incompressible cylinder and a fluid,” Prikl. Mekh.,16, No. 6, 40–45 (1980).

    Google Scholar 

  6. A. M. Bagno, “Propagation of longitudinal waves in a compressible prestressed cylinder containing fluid,” Prikl. Mekh.,16, No. 8, 24–29 (1980).

    Google Scholar 

  7. A.M. Bagno, Investigation of the Law of Wave Propagation in a Prestressed Cylinder with a Fluid: Author’s Abstract of Physico-Mathematical Sciences Candidate Dissertation, Kiev (1980), pp. 1–14.

  8. A. M. Bagno, “Anomalous dispersion in a hollow prestressed compressible cylinder,” Transactions of the DC Conference of Young Scientists of the Institute of Mechanics, National Academy of Sciences of the Ukraine, Kiev (1982), pp. 2–5.

    Google Scholar 

  9. A. M. Bagno, “Effect of initial stresses on the ‘backward wave’ in a system composed of a prestressed compressible cylinder and a fluid,” Prikl. Mekh.,19, No. 3, 66–70 (1983).

    Google Scholar 

  10. A. M. Bagno, “Effect of initial stresses on the propagation of waves in a compressible cylinder with a viscous compressible fluid,” Prikl. Mekh.,20, No. 4, 103–110 (1984).

    Google Scholar 

  11. A. M. Bagno “Effect of a viscous compressible fluid on the propagation of Stoneley waves at a solid-fluid interface,” Prikl. Mekh.,20, No. 6, 70–74 (1984).

    Google Scholar 

  12. A. M. Bagno, “Effect of fluid on the velocity of axisymmetric waves in a prestrained compressible cylinder,” Gidromekhanika, No.50, 34–36 (1984).

    Google Scholar 

  13. A. M. Bagno, “Effect of finite strains on the velocity of Stoneley waves in a highly elastic incompressible half-space interacting with an ideal fluid,” Prikl. Mekh.,21, No. 6, 116–119 (1985).

    Google Scholar 

  14. A. M. Bagno, “Effect of initial stresses on surface waves in a system composed of a prestrained compressible body and a viscous compressible fluid,” Prikl. Mekh.,22, No. 6, 32–36 (1986).

    Google Scholar 

  15. A. M. Bagno, “Effect of initial stresses on the velocity of surface waves in a compressible half-space interacting with an ideal fluid layer,” Prikl. Mekh.,25, No. 1, 113–117 (1989).

    Google Scholar 

  16. A. M. Bagno, “Effect of initial stresses on the wave process in a compressible elastic half-space interacting with a viscous fluid layer,” Dopov. Akad. Nauk Ukr. RSR Ser. A, No. 8, 22–25 (1989).

  17. A. M. Bagno, “Waves in a prestrained elastic half-space interacting with a layer of viscous compressible fluid,” AU-Union Symposium “Interation of Acoustic Waves with Elastic Bodies” (Tallinin, 26–27.10.89): Summary of Documents, Tallinin (1989), pp. 22–25.

  18. A. M. Bagno, “Effect of finite strains on the wave process in an incompressible half-space carrying a layer of viscous fluid,” Dopov. Akad. Nauk Ukr. SSR Ser. A, No. 7, 36–40 (1990).

  19. A. M. Bagno and A. N. Guz’, “Study of the effect of fluid on the propagation of longitudinal waves in a prestressed cylinder of an incompressible material,” Dopov. Akad. Nauk Ukr. SSR Ser. A, No. 9, 39–42 (1980).

  20. A. M. Bagno and A. N. Guz’, “Wave propagation in a prestressed incompressible cylinder containing a viscous compressible fluid,” Mekh. Kompoz. Mater., No. 2, 349–355 (1982).

  21. A. M. Bagno and A. N. Guz’, “Propagation of small perturbations in a system composed of a prestressed compressible solid and a viscous compressible fluid,” Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 1, 167–170 (1983).

  22. A. M. Bagno and A. N. Guz’, “Effect of initial stresses on wave velocity in a hollow cylinder with fluid,” Prikl. Mekh.,22, No. 3, 15–19 (1986).

    Google Scholar 

  23. A. M. Bagno and A. N. Guz’, “Stoneley waves at the interface of a prestressed incompressible solid half-space and a viscous compressible fluid,” Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 3, 107–110 (1987).

  24. A. M. Bagno and G. I. Shchuruk, “Features of the wave process in a system composed of an elastic body and a viscous fluid,” Dopov. Akad. Nauk Ukr. RSR, Mat. Prir. Tekh. Nauk, No. 9, 52–56 (1993).

  25. A. M. Bagno, A. N. Guz’, and G. I. Shchuruk, “Effect of initial strains on wave velocity in a prestressed incompressible half-space interacting with a layer of ideal fluid,” Prikl. Mekh.,24, No. 6, 68–73 (1988).

    Google Scholar 

  26. A. M. Bagno, A. N. Guz’, and G. I. Shchuruk, “Waves in a viscous fluid layer on an elastic half-space,” Prikl. Mekh., No. 4, 3–7 (1990).

  27. A. M. Bagno, A. N. Guz’, and G. I. Shchuruk, “Features of an asymmetric wave process in an orthotropic Timoshenko shell containing a viscous fluid,” Prikl. Mekh.,26, No. 12, 22–28 (1990).

    Google Scholar 

  28. A. M. Bagno, A. N. Guz’, and G. I. Shchuruk, “Waves in an elastic prestressed compressible body interacting with an ideal fluid,” Prikl. Mekh.,30, No. 2, 3–10 (1994).

    Google Scholar 

  29. A. M. Bagno, A. N. Guz’, and V. I. Efremov, “Effect of initial strains on wave propagation in an incompressible cylinder located in an ideal fluid,” Prikl. Mekh.,30, No. 8, 31–34 (1994).

    Google Scholar 

  30. A. M. Bagno, A. N. Guz’, and G. I. Shchuruk, “Effect of the viscosity of a fluid on waves in an elastic compressible prestrained layer interacting with the fluid,” Prikl. Mekh.,30, No. 9, 3–8 (1994).

    Google Scholar 

  31. A. M. Bagno and V. P. Koshman, “Effect of finite initial strains on the velocity of Rayleigh waves in an incompressible half-space,” Dopov. Akad. Nauk Ukr. SSR Ser. A, No. 9, 18–20 (1983).

  32. A. M. Bagno and V. P. Koshman, “‘Backward wave’ phenomenon in a prestrained cylinder containing fluid,” Transactions of the X Conference of Young Scientists of the Institute of Mechanics, National Academy of Sciences of the Ukraine, Kiev (1984).

    Google Scholar 

  33. V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  34. L. M. Brekhovskikh, Waves in Layered Media [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  35. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  36. V. N. Buivol, Vibrations and Stability of Deformable Systems in a Fluid [in Russian], Nauk. Dumka, Kiev (1975).

    Google Scholar 

  37. I. A. Viktorov, “Types of elastic surface waves in solids,” Akust. Zh.,25, No. 1, 1–17 (1979).

    ADS  MathSciNet  Google Scholar 

  38. I. A. Viktorov, Surface Sound Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  39. A. S. Vol’mir, Shells in a Flow of Liquid and Gas. Problems of Aerohydroelasticity [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  40. A. S. Vol’mir, Shells in a Flow of Liquid and Gas. Problems of Hydroelasticity [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  41. Sh. U. Galiev, Dynamics of the Interaction of Structural Elements with a Compression Wave in a Fluid [in Russian], Nauk. Dumka, Kiev (1977).

    Google Scholar 

  42. Sh. U. Galiev, Dynamics of Hyperelastoplastic Systems [in Russian], Nauk. Dumka, Kiev (1981).

    Google Scholar 

  43. V. S. Gontkevich, Natural Vibrations of Shells in Fluid [in Russian], Nauk. Dumka, Kiev (1964).

    Google Scholar 

  44. E. I. Grigolyuk and A. G. Gorshkov, Nonsteady Hydroelasticity of Shells [in Russian], Sudostroenie, Leningrad (1974).

    Google Scholar 

  45. E. I. Grigolyuk and A. G. Gorshkov, “Dynamics of solids and thin shells of revolution interacting with a fluid,” Nauchn. Tr. Inst. Mekh. Mosk. Univ., No.36, 1–179 (1975).

    Google Scholar 

  46. E. I. Grigolyuk and I. T. Selezov, Nonclassical Theories of the Vibration of Rods, Plates, and Shells [in Russian], Izd-vo VINITI, Moscow (1973).

    Google Scholar 

  47. V. T. Grinchenko, Equilibrium and Steady Vibration of Finite Elastic Bodies [in Russian], Nauk. Dumka, Kiev (1978).

    Google Scholar 

  48. V. T. Grinchenko and G. L. Komissarova, “Wave propagation in an hollow elastic cylinder with a fluid,” Prikl. Mekh.,20, No. 1, 21–26 (1984).

    Google Scholar 

  49. V. T. Grinchenko and G. L. Komissarova, “Properties of normal asymmetric waves in a thick-walled cylinder filled with a fluid,” Prikl. Mekh.,24, No. 10, 15–20 (1988).

    Google Scholar 

  50. V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bodies [in Russian], Nauk. Dumka, Kiev (1981).

    Google Scholar 

  51. A. N. Guz’, Stability of Deformable Three-Dimensional Bodies [in Russian], Nauk. Dumka, Kiev (1971).

    Google Scholar 

  52. A. N. Guz’, Stability of Elastic Bodies with Finite Strains [in Russian], Nauk. Dumka, Kiev (1973).

    Google Scholar 

  53. A. N. Guz’, “Representation of general solutions in the linearized theory of elasticity of compressible bodies,” Dopov. Akad. Nauk Ukr. SSR Ser. A, No. 12, 1092-1095 (1975).

  54. A. N. Guz’, “Representation of general solutions in the linearized theory of elasticity of incompressible bodies,” Dopov. Akad. Nauk Ukr. SSR Ser. A, No. 12, 1092-1095 (1975).

  55. A. N. Guz’, “Linearized theory of the propagation of elastic waves in bodies with initial stresses,” Prikl. Mekh.,14, No. 4, 3–32 (1978).

    MathSciNet  Google Scholar 

  56. A. N. Guz’, “Love waves in bodies with initial stresses,” Dopov. Akad. Nauk Ukr. SSR Ser. A, No. 12, 1092-1095 (1978).

  57. A. N. Guz’, Stability of Elastic Bodies in Cubic Compression [in Russian], Nauk. Dumka, Kiev (1979).

    Google Scholar 

  58. A. N. Guz’, “Problems of hydroelasticity for a viscous fluid and elastic bodies with initial stresses,” Dokl. Akad. Nauk SSSR,251, No. 21, 305–308 (1980).

    Google Scholar 

  59. A. N. Guz’, “Problems of aerohydroelasticity for bodies with initial stresses,” Prikl. Mekh.,16, No. 3, 3–21 (1980).

    MathSciNet  Google Scholar 

  60. A. N. Guz’, “Representation of solutions of linearized Navier-Stokes equations,” Dokl. Akad. Nauk SSSR,253, No. 14, 825–827 (1980).

    ADS  MathSciNet  Google Scholar 

  61. A. N. Guz’, “Representation of solutions of linearized Navier-Stokes equations for a moving fluid,” Dokl. Akad. Nauk SSR,255, No. 51, 1066–1068.

  62. A. N. Guz’, “Propagation of waves in a cylindrical shell with a viscous compressible fluid,” Prikl. Mekh.,16, No. 10, 10–20 (1980).

    Google Scholar 

  63. A. N. Guz’, Mechanics of Brittle Fracture of Materials with Initial Stresses [in Russian], Nauk. Dumka, Kiev (1983).

    Google Scholar 

  64. A.N. Guz’, Principles of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vishcha Shk., Kiev (1986).

    Google Scholar 

  65. A. N. Guz’, Elastic Waves in Bodies with Initial Stresses. Vol. 1. General Problems [in Russian], Nauk. Dumka, Kiev (1986).

    Google Scholar 

  66. A. N. Guz’, Elastic Waves in Bodies with Initial Stresses. Vol. 2. Propagation Laws [in Russian], Nauk. Dumka, Kiev (1986).

    Google Scholar 

  67. A. N. Guz’, “Elastic waves in compressible materials with initial stresses and a nondestructive ultrasonic method of determining biaxial residual stresses,” Prikl. Mekh.,30, No. 1, 3–17 (1994).

    MathSciNet  Google Scholar 

  68. A. N. Guz’ and A. M. Bagno, “Stoneley waves at the interface between a viscous fluid and an elastic half-space with initial stresses,” Prikl. Mekh.,20, No. 12, 3–7 (1984).

    Google Scholar 

  69. A. N. Guz’ and A. M. Bagno, “Effect of initial stresses on wave velocity in a prestrained compressible layer in contact with a fluid half-space,” Dokl. Akad. Nauk SSSR,329, No. 6, 715–717 (1993).

    Google Scholar 

  70. A. N. Guz’, A. M. Bagno, and G. I. Shchuruk, “Axisymmetric elastic waves in an orthotropic cylindrical shell containing a viscous compressible fluid,” Dopov. Akad. Nauk Ukr. SSR Ser. A, No. 9, 41–46 (1989).

  71. A. N. Guz’, A. P. Zhuk, and F. G. Makhort, Waves in a Layer with Initial Stresses [in Russian], Nauk. Dumka, Kiev (1976).

    Google Scholar 

  72. A. N. Guz’ and V. D. Kubenko, Theory of Unsteady Aerohydroelasticity [in Russian], Nauk. Dumka, Kiev (1982).

    Google Scholar 

  73. A. N. Guz’, V. D. Kubenko, and A. E. Babaev, Hydroelasticity of Shell Systems [in Russian], Vishcha Shk., Kiev (1984).

    Google Scholar 

  74. A. N. Guz’, V. D. Kubenko, and M. A. Cherevko, Diffraction of Elastic Waves [in Russian], Nauk. Dumka, Kiev (1978).

    Google Scholar 

  75. A. N. Guz’, V. D. Kubenko, and M. A. Cherevko, in: Dynamics of Bodies Interacting with a Medium [in Russian], Nauk. Dumka, Kiev (1991).

    Google Scholar 

  76. A. N. Guz’, F. G. Makhort, and O. I. Gushcha, Introduction to Acoustoelasticity [in Russian], Nauk. Dumka, Kiev (1977).

    Google Scholar 

  77. R. M. Davis, Stress Waves in Solids [Russian translation], IL, Moscow (1961).

  78. A. P. Zhuk, “Stoneley waves in a medium with initial stresses,” Prikl. Mekh.,16, No. 1, 113–114 (1980).

    MathSciNet  Google Scholar 

  79. B. V. Zamyshlyaev and Yu. S. Yakovlev, Dynamic Loads in Underwater Explosions [in Russian], Sudostroenie, Leningrad (1967).

    Google Scholar 

  80. N. V. Zvolinskii, M. N. Raitman, and G. S. Shapiro, “Dynamics of deformable solids,” in: Mechanics in the USSR over the Last 50 Years. Vol. 3. Mechanics of Deformable Solids [in Russian], Nauka, Moscow (1972), pp. 291–323.

    Google Scholar 

  81. M. A. Il’gamov, Vibrations of Elastic Shells Containing Liquid and Gas [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  82. V. G. Karnaukhov, I. K. Senchenkov, and B. P. Gumenyuk, Thermomechanical Behavior of Viscoelastic Bodies in Harmonic Loading [in Russian], Nauk. Dumka, Kiev (1985).

    Google Scholar 

  83. G. Kol’sky, Stress Waves in Solids [Russian translation], IL, Moscow (1955).

  84. G. L. Komissarova, “Solution of the problem of the propagation of elastic waves in a cylinder with a fluid,” Prikl. Mekh.,26, No. 8, 25–29 (1990).

    Google Scholar 

  85. V. D. Kubenko, Transient Interaction of Structural Elements wim a Medium [in Russian], Nauk. Dumka, Kiev (1979).

    Google Scholar 

  86. I. A. Lukovskii, Nonlinear Vibrations of Liquid in Vessels of Complex Geometry [in Russian], Nauk. Dumka, Kiev (1975).

    Google Scholar 

  87. I. A. Lukovskii, O. S. Limarchenko, and V. A. Trotsenko, “Variational methods of studying nonlinear vibrations of bodies containing moving fluid masses and elastic elements,” VI Ail-Union Congress on Theoretical and Applied Mechanics: Annot. Doc., Tashkent (1986).

  88. I. A. Lukovskii, V. A. Trotsenko, and V. I. Usyukin, Interaction of Thin-Walled Elastic Elements with a Fluid in Moving Cavities [in Russian], Nauk. Dumka, Kiev (1989).

    Google Scholar 

  89. L. M. Lyamshev, Reflection of Sound by Thin Plates and Shells in a Fluid [in Russian], Izd. AN SSSR, Moscow (1955).

    Google Scholar 

  90. L. Mandel’sham, “Group velocity in a crystalline lattice,” Zh. Eksp. Teor. Fiz.,15, No. 9, 475–478 (1945).

    Google Scholar 

  91. N. A. Kil’chevskii (ed.), Mechanics of Shell-Liquid-Heated-Gas Systems [in Russian], Nauk. Dumka, Kiev (1970).

    Google Scholar 

  92. T. Meeker and A. Meitzler, Waveguide Propagation in Long Cylinders and Plates [Russian translation], Vol. 1, Pt. A, Mir, Moscow (1966), pp. 140–203.

    Google Scholar 

  93. E. N. Mnev and A. K. Pertsev, Hydroelasticity of Shells [in Russian], Sudostroenie, Leningrad (1970).

    Google Scholar 

  94. V. E. Nakoryakov, V. V. Sobolev, I. R. Shreiber, and B. Ya. Shtivel’man, “Hydraulic shock and the propagation of disturbances in elastic tubes filled with fluid,” Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, No. 4, 3–8 (1976).

  95. U. K. Nigul, Ya. A. Metsaveer, N. D. Vekler, and M. E. Kutser, Echo Signals from Elastic Objects [in Russian], Vol. 2, Izd. AN Eston. SSR, Tallin (1974).

    Google Scholar 

  96. U. K. Nigul and Yu. K. Engel’brekht, Nonlinear and Linear Wave Transients in the Deformation of Thermoelastic and Elastic Bodies [in Russian], AN Eston. SSR, In-t Kibernetiki, Tallin (1972).

    Google Scholar 

  97. T. Pedley, Hydrodynamics of Large Blood Vessels [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  98. I. M. Rapoport, Vibrations of an Elastic Shell Partially Filled with Fluid [in Russian], Mashinostroenie, Moscow (1967).

    Google Scholar 

  99. Kh. A. Rakhmatulin, “Survey of studies of the propagation of elastoplastic waves,” in: Strength and Ductility [in Russian], Nauka, Moscow (1971), pp. 307–316.

    Google Scholar 

  100. I. T. Seleznov and L. V. Selezova, Waves in Magnetohydroelastic Media [in Russian], Nauk. Dumka, Kiev (1975).

    Google Scholar 

  101. I. K. Senchenkov and O. P. Chervinko, “Certain features of the frequency spectrum of a cylinder of an incompressible material with rigidly fastened ends,” Prikl. Mekh.,21, No. 3, 117–119 (1985).

    Google Scholar 

  102. L. I. Slepyan, Nonsteady Elastic Waves [in Russian], Sudostroenie, Leningrad (1972).

    Google Scholar 

  103. V. I. Storozhev, “Spectrum of normal elastic waves in a layered crystalline structure,” Mechanics of Nonuniform Structures. Summary of Documents of an All-Union Scientific Conference, Lvov, 1983, Nauk. Dumka, Kiev (1983), pp. 213–214.

    Google Scholar 

  104. D. V. Strett (Lord Rayleigh), Theory of Sound [Russian translation], Gostekhizdat Moscow (1955).

    Google Scholar 

  105. E. L. Shenderov, Wave Problems in Hydroacoustics [in Russian], Sudostroenie, Moscow (1955).

    Google Scholar 

  106. N. A. Shul’ga, “Surface and body waves in a medium composed of alternating fluid and solid layers,” in: Boundary-Value Problems of Mathematical Physics [in Russian], Kiev (1978).

  107. N. A. Shul’ga, Principles of the Mechanics of Layered Media with a Periodic Structure [in Russian], Nauk. Dumka, Kiev (1981).

    Google Scholar 

  108. N. A. Shul’ga, A. Ya. Grigorenko, and T. L. Efimova, “Effect of nonuniformity of the material on the dispersion characteristics of axisymmetric elastic waves in cylindrical waveguides,” Prikl. Mekh.,27, No. 2, 123–126 (1991).

    Google Scholar 

  109. G. I. Shchuruk and A. M. Bagno, “Effect of the density of the fluid on the wave process in a system composed of an ideal fluid layer and a prestressed incompressible elastic half-space,” Transactions of the XII Conference of Young Scientists of the Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. 27–29.05.87. Manuscript submitted to VINITI 29.07.87. No. 5389-B87.

  110. G. I. Shchuruk and A. M. Bagno, “Features of the effect of the fluid in a system composed of a prestressed elastic half-space and an ideal fluid layer,” Transactions of the XII Conference of Young Scientists of the Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. 24–27.05.88. Manuscript submitted to VINITI 27.12.88. No. 9071-B.88.

  111. G. I. Shchuruk and A. M. Bagno, “Effect of the viscosity of the fluid on the propagation of waves in an orthotropic shell,” Transactions of the XII Conference of Young Scientists of the Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. 23–26.05.89. Pt. 2. Kiev (1989), pp. 347–352. Manuscript submitted to VINITI 02.08.89. No. 5165-1389.

  112. G. I. Shchuruk, “Torsion waves in a cylindrical shell in a viscous compressible fluid,” Prikl. Mekh.,19, No. 4, 117–121 (1983).

    Google Scholar 

  113. G. I. Shchuruk, “Wave propagation in an orthotropic shell interacting with a viscous compressible fluid, “ Kiev (1983). Manuscript submitted to VINITI 06.09.83. No. 5114-83 Dep.

  114. G. I. Shchuruk, “Propagation of axisymmetric waves in an orthotropic shell containing a viscous fluid,” Nonclassical and Mixed Problems of the Mechanics of Deformable Bodies: Materials of a Seminar of Young Scientists (Kiev, 21–23.05.85). In-t Mekhanii AN Ukr. RSR, Kiev (1985), pp. 225–228. Manuscript submitted to VINITI 29.07.85, No. 5531-85 Dep.

  115. J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publ. Co., Amsterdam (1973).

    MATH  Google Scholar 

  116. M. Anliker, W. E. Moritz, and E. Ogden, “Transmission characteristics of axial waves in blood vessels,” J. Biomech.,1, No. 4, 235–246 (1968).

    Article  Google Scholar 

  117. H. B. Atabek, “Wave propagation through a viscous fluid contained in a tethered, initially stressed orthotropic elastic tube,” Biophys. J.,8, No. 5, 626–649 (1968).

    ADS  Google Scholar 

  118. H. B. Atabek and H. S. Lew, “Wave propagation in a viscous fluid contained in a stretched elastic tube,” Proc. 18th Annual Conf. Engng. Med. and Biol., Philadelphia, Pa., 1965, Vol. 7, Philadelphia, Pa. (1965).

  119. H. B. Atabek, “Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube, “ Biophys. J.,6, No. 4, 481–503 (1966).

    Article  ADS  Google Scholar 

  120. A. Bagno, “Propagation of waves in prestressed elastic cylinders containing liquid,” Inter. Conf. EAHE, “Engineering Aerohydroelasticity,” December 5–8, 1989, Vol. 2, Prague (1989), pp. 180–184.

  121. M. A. Biot, “Propagation of elastic waves in a cylindrical bar containing a fluid, “ J. Appl. Phys.,23, No. 9, 997–1005 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  122. G. Brankov, A. Rachev, and V. Petrov, “Propagation of pulse waves with prestress in arteries,” in: Biomechanics [in Ukrainian], Vol. 1 (1974), pp. 17–26.

    Google Scholar 

  123. R. P. D’Armond and W. T. Rouleau, “Wave propagation of viscous compressible liquids contained in elastic tubes,” ASME Pap., No. FE-23 (1972).

  124. H. Dimeray and H. A. Erbay, “Erbay’s effect of prestress on pulse waves in arteries,” Z. Angew. Math. Mech.,67, No. 10, 485 (1987).

    Google Scholar 

  125. W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media, McGraw-Hill Books, New York, (1957).

    MATH  Google Scholar 

  126. G. W. Farneil, “Properties of elastic surface waves,” Phys. Acoust., London,6, No. 4, 109–166 (1970).

    Google Scholar 

  127. G. W. Farnell and E. L. Adler, “Elastic wave propagation in thin layers,” Phys. Acoustics: Principles and Methods,9, 35–127 (1972).

    Google Scholar 

  128. H. Lamb, “On waves in an elastic plate,” Proc. R. Soc. London Ser. A,93, No. 648, 114–128 (1917).

    Article  ADS  Google Scholar 

  129. James A. Maxwell, The Dispersion and Dissipation of Waves in Blood Vessels. Doct. Diss., Stanford Univ., 1967. Diss. Abstr.,B28, No. 7, 2816 (1968).

    Google Scholar 

  130. James A. Maxwell and Max Anliker, “The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties,” Biophys. J.,8, No. 8, 920–950 (1968).

    Google Scholar 

  131. J. J. McCoy, “Effects of non-propagating plate waves on dynamical stress concentration,” Int. J. Solids Struct.,4, No. 3, 355–370 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  132. H. D. McNiven, “Extensional waves in a semiinfinite elastic rod,” J. Acoust. Soc. Am.,33, No. 1, 23–27 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  133. H. D. McNiven and Y. Mengi, “Dispersion of waves in transversely isotropic rods,” J. Acoust. Soc. Am., No. 49, 229–236 (1971).

    Google Scholar 

  134. H. D. McNiven and A. H. Shah, “The influence of the end mode on the resonant frequencies of finite, hollow, elastic rods,” J. Sound. Vib.,6, No. 1, 8–19 (1967).

    Article  ADS  Google Scholar 

  135. A. H. Meitzler, “Backward-wave transmission of stress pulses in elastic cylinders and plates,” J. Acoust. Soc. Am.,38, No. 5, 835–842 (1965).

    Article  ADS  Google Scholar 

  136. J. Miklowitz, “Elastic wave propagation,” in: Applied Mechanics Surveys, Spartan Books, Washington (1966), pp. 80–839.

    Google Scholar 

  137. R. D. Mindlin, “Waves and vibrations in isotropic elastic plates,” in: Structural Mechanics, Pergamon Press, New York (1960), pp. 199–232.

    Google Scholar 

  138. R. D. Mindlin and H. D. McNiven, “Axially symmetric waves in elastic rods,” J. Appl. Mech.,27, No. 1, 145–151 (1960).

    MATH  MathSciNet  Google Scholar 

  139. I. Mirsky, “Three-dimensional and shell-theory analysis for axisymmetric vibrations of orthotropic shells,” J. Acoust. Soc. Am.,39, No. 3, 549–555 (1966).

    Article  MATH  ADS  Google Scholar 

  140. I. Mirsky, “Wave propagation in a viscous fluid contained in an orthotropic elastic tube,” Biophys. J.,7, No. 2, 165–186 (1967).

    ADS  Google Scholar 

  141. I. Mirsky, “Pulse velocities in an orthotropic elastic tube,” Bull. Math. Biophys.,29, No. 2, 311–318 (1967).

    Article  Google Scholar 

  142. I. Mirsky, “Pulse velocities in initially stressd cylindrical rubber tubes,” Bull. Math. Biophys.,30, No. 2, 299–308 (1968).

    Article  MATH  ADS  Google Scholar 

  143. J. Oliver, “A summary of observed seismic surface wave dispersion,” Bull. Seismol. Soc. Am.,52, No. 1, 81–90 (1962).

    MathSciNet  Google Scholar 

  144. T. E. Owen, “Surface wave propagation in ultrasonics,” Prog. Appl. Mater. Res., No. 6, 69–87 (1964).

    Google Scholar 

  145. L. Pochhammer, “Uber die Fortpflanzungeschwindigkeiten Schwingungen in einem unbergrawzten isotropen Kreiscylinder,” J. Reine und Angew Math.,81, No. 4, 324–336 (1876).

    Google Scholar 

  146. J. W. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc,17, No. 253, 4–11 (1985/1986).

    Google Scholar 

  147. M. Redwood, Mechanical Waveguides: The Propagation of Acoustic and Ultrasonic Waves in Fluids and Solids with Boundaries, Pergamon Press, New York-London (1960).

    Google Scholar 

  148. R. Stoneley, “The elastic waves at the interface of separation of two solids,” Proc. R. Soc. London Ser. A,106, No. 732, 416–429 (1924).

    Article  ADS  Google Scholar 

  149. R. N. Thurston, Waves in Solids, Springer, New York-Heidelberg (1960), Yl/a, pp. 109–308.

    Google Scholar 

  150. R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am.,64, No. 1, 1–37 (1978).

    Article  ADS  MATH  Google Scholar 

  151. I. Tolstoy and E. Usdin, “Wave propagation in elastic plates: low and high mode dispersion,” J. Acoust. Soc. Am.,29, No. 1, 37–42 (1957).

    Article  ADS  Google Scholar 

  152. H. Uberall, “Surface waves in acoustics,” Thys. Acoustics: Principles and Methods,10, 1–60 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika, Vol. 33, No. 6, pp. 3–39, June, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagno, A.M., Guz’, A.N. Elastic waves in prestressed bodies interacting with a fluid (survey). Int Appl Mech 33, 435–463 (1997). https://doi.org/10.1007/BF02700652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700652

Keywords

Navigation