Skip to main content
Log in

Worm holes and their space-time continuum: Spatial and temporal variability of macroinfaunal annelids in a Northern New England salt marsh

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal systems serve many human uses and as a result are susceptible to anthropogenic activities such as nutrient loading and overfishing. In soft sediments, infauna frequently serve as key indicators of such activities. To use infauna effectively as bioindicators, it is important to understand how infaunal abundances and community patterns vary naturally within ecosystems. We examined the spatial and temporal dynamics of infaunal annelids in four tidal creeks of the Plum Island Estuary, Massachusetts, USA, from June to October 2003, sampling along a tidal inundation gradient that crossed five distinct habitats from creek bottoms to the vegetated high marsh platform. Annelids comprised 97% of the total number of macroinfauna. Highest densities were found in creek wall habitats (33,418–65,535 individuals m−2), and lowest densities (2,421–10,668 individuals m−2) were found inSpartina patens habitats. Five numerically abundant species comprised 87% of the annelid assemblage and three species,Manayunkia aestuarina (Polychaeta),Paranais litoralis (Oligochaeta), andCernosvitoviella immota (Oligochaeta), were broadly distributed across the marsh landscape.Streblospio benedicti (Polychaeta) andFabricia sabella (Polychaeta) were abundant only in mudflat and creek wall habitats, respectively.P. litoralis experienced a summer decline in all habitats, whereasM. aestuarina abundance increased 4–5 fold, in October relative to June in creek wall and tall-formSpartina alterniflora habitats. Hierarchical spatial, analysis revealed that >90% of the variability in annelid abundances was found at the mesospatial scale (<50 m). Variation among the four creeks, (>1 km) was relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bell, S. S.. 1982. On the population biology and meiofaunal characteristics ofManayunkia aestuarina (Polychaeta: Sabellidae: Fabricinae) from a South Carolina salt marsh.Estuarine Coastal and Shelf Science 14:215–221.

    Article  Google Scholar 

  • Bergstrom, U., G. Englund, andE. Bonsdorff. 2002. Small-scale spatial structure of Baltic Sea zoobenthos—Inferring processes from patterns.Journal of Experimental Marine Biology and Ecology 281:123–136.

    Article  Google Scholar 

  • Benedetti-Cecchi, L. 2001. Variability in abundance of algae and invertebrates at different spatial scales on rocky sea shores.Marine Ecology Progress Series 215:79–92.

    Article  Google Scholar 

  • Benedetti-Cecchi, L., S. Acunto, F. Bulleri, andF. Cinelli. 2000. Population ecology of the barnacle,Chtamalus stellatus (Poli), in the northwest Mediterranean.Marine Ecology Progress Series 198: 157–170.

    Article  Google Scholar 

  • Bertness, M. D. 1985. Fiddler crab regulation ofSpartina alterniflora production on a New England salt marsh.ecology 66:1042–1055.

    Article  Google Scholar 

  • Bertness, M. D. 1999. The Ecology of Atlantic Shorelines, 1st edition. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Bick, A. 1996. Reproduction and larval development ofManayunkia aestuarina (Bourne, 1883) (Polychaeta, Sabellidae) in a coastal region of the southern Baltic.Helgoländer Meeresuntersuchungen 50:287–298.

    Article  Google Scholar 

  • Bishop, T. D. 1984. A range extension forManayunkia aestuarina (Bourne, 1883) (Polychaeta: Sabellidae) to the Gulf Coast of the United States with a review of previous habitat information.Gulf Research Reports 7:389–392.

    Google Scholar 

  • Butman, C. A. 1987. Larval settlement of soft-sediment invertebrates: The spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes.Oceanography and Marine Biology Annual Review 25:113–165.

    Google Scholar 

  • Carpenter, S. R. 1989. Replication and treatment strength in whole-lake experiments.Ecology 70:453–463.

    Article  Google Scholar 

  • Clarke, K. R. andR. M. Warwick. 2001. Change in Marine Communities. An Approach to Statistical Analysis and Interpretation, 1st edition. PRIMER-E, Plymouth, U.K.

    Google Scholar 

  • Cheng, I.-J., J. S. Levinton, M. McCartney, D. Martinez, andM. J. Weissburg. 1993. A bioassay approach to seasonal variation in the nutritional value of sediment.Marine Ecology Progress Series 94:275–285.

    Article  Google Scholar 

  • Cook, D. G. and R. O. Brinkhurst. 1973. Marine Flora and Fauna of the Northeastern United States. Annelida: Oligochaeta. NOAA Technical Report NMFS CIRC-374. Seattle, Washington.

  • Coull, B. C., S. S. Bell, A. M. Savory, andB. W. Dudley. 1979. Zonation of meiobenthic copepods in a southeastern United States salt marsh.Estuarine and Coastal Marine Science 9:181–188.

    Article  Google Scholar 

  • Deegan, L. A., J. L. Bowen, D. Drake, J. W. Fleeger, C. T. Friedrichs, K. A. Galván, J. E. Hobbie, C. S. Hopkinson, M. Johnson, D. S. Johnson, L. E. Lemay, E. Miller, B. J. Peterson, C. Picard, S. Sheldon, J. Vallino, and R. S. Warren. 2007. Susceptibility of salt marshes to nutrient enrichment and predator removal.Ecological Applications In press.

  • Emeis, K.-C., J. R. Benoit, L. Deegan, A. J. Gilbert, V. Lee, J. M. Glade, M. Meybeck, S. B. Olsen, andB. von Bodungen. 2001. Unifying Concepts for Integrated Coastal Management, p. 345–361.In B. Von Bodungen and R. K. Turner (eds.), Science and Integrated Coastal Management, Volume 8. Dahlem University Press, Berlin, Germany.

    Google Scholar 

  • Fauchald, K. andP. A. Jumars. 1979. The diet of worms: A study of polychaete feeding guilds.Oceanography and Marine Biology Annual Review 17:193–284.

    Google Scholar 

  • Fleeger, J. W., P. O. Yund, andB. Sun. 1995. Active and passive processes associated with initial settlement and post-settlement dispersal of suspended meiobenthic copepods.Journal of Marine Research 53:609–645.

    Article  Google Scholar 

  • Folk, R. L. 1980. Petrology of Sedimentary Rocks, 2nd edition. Hemphill Publishing Company, Austin, Texas.

    Google Scholar 

  • Fraschetti, S., A. Terlizzi, andL. Benedetti-Cecchi. 2005. Patterns of distribution of marine assemblages from rocky shores: Evidence of relevant scales of variation.Marine Ecology Progress Series 296:13–29.

    Article  Google Scholar 

  • Heck, K. L., D. A. Nadeau, andR. Thomas. 1997. The nursery role of seagrass beds.Gulf of Mexico Science 1:50–54.

    Google Scholar 

  • Kelaher, B. P. andJ. S. Levinton. 2003. Variation in detrital enrichment causes spatio-temporal variation in soft-sediment assemblages.Marine Ecology Progress Series 261:85–97.

    Article  Google Scholar 

  • Kneib, R. T. 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: Causes and questions.Estuaries 7:392–412.

    Article  Google Scholar 

  • Lawrie, S. M. andC. D. McQuaid. 2001. Scales of mussel bed complexity: Structure, associated biota and recruitment.Journal of Experimental Marine Biology and Ecology 257:135–161.

    Article  Google Scholar 

  • Levin, L. A. 1981. Dispersion, feeding behavior and competition in two spionid polychaetes.Journal of Marine Research 39:99–117.

    Google Scholar 

  • Levin, L. A.. 1982. Interference interactions among tube-dwelling polychaetes in a dense infaunal assemblage.Journal of Experimental Marine and Biology 65:107–119.

    Article  Google Scholar 

  • Levin, L. A. 1984. Multiple patterns of development inStreblospio benedicti Webster (Spionidae) from three coasts of North America.Biological Bulletin 166:494–508.

    Article  Google Scholar 

  • Levin, S. A. 1992. The problem of pattern and scale in ecology.Ecology 73:1943–1967.

    Article  Google Scholar 

  • Levin, L. A., D. Talley, andG. Thayer. 1996. Succession of macrobenthos in a created salt marsh.Marine Ecology Progress Series 141:67–82.

    Article  Google Scholar 

  • Levin, L. A. andT. S. Talley. 2000. Influences of vegetation and abiotic environmental factors on salt marsh invertebrates, p. 661–707.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  • Levin, L. A., T. H. Talley, andJ. Hewitt. 1998. Macrobenthos ofSpartina foliosa (Pacific Cordgrass) salt marshes in southern California: Community structure and comparison to a Pacific mudflat and aSpartina alterniflora (Atlantic smooth cordgrass) marsh.Estuaries 21:129–144.

    Article  Google Scholar 

  • Lopez, G. R. andJ. S. Levinton. 1987. Ecology of deposit-feeding animals in marine-sediments.Quarterly Review of Biology 62:235–260.

    Article  Google Scholar 

  • Manly, B. F. J. 2001. Statistics for Environmental Science and Management, 1st edition. Chapman and Hall/CRC, Boca Raton, Florida.

    Google Scholar 

  • Moseman, S. M., L. A. Levin, C. Currin, andC. Forder. 2004. Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California.Estuarine Coastal and Shelf Science 60:755–770.

    Article  Google Scholar 

  • Netto, S. A. andP. C. Lana. 1999. The role of above- and belowground components ofSpartina alterniflora (Loisel) and detritus biomass in structuring macrobenthic associations of Paranagua Bay (SE, Brazil).Hydrobiologia 400:167–177.

    Article  Google Scholar 

  • Nilsson, P. G., J. S. Levinton, andJ. P. Kurdziel. 2000. Migration of a marine oligochaete: Induction of dispersal and microhabitat choice.Marine Ecology Progress Series 207:89–96.

    Article  Google Scholar 

  • Oksanen, L. 2001. Logic of experiments in ecology: Is pseudoreplication a pseudoissue?Oikos 94:27–38.

    Article  Google Scholar 

  • Olafsson, E. B., C. H. Peterson, andW. G. Ambrose. 1994. Does recruitment limitation structure populations and communities of macroinvertebrates in marine soft sediments—the relative significance of presettlement and postsettlement processes.Oceanography and Marine Biology Annual Review 32:65–109.

    Google Scholar 

  • Orth, R. J. 1977. The importance of sediment stability in seagrass communities, p. 281–300.In B. Coull (ed.), Ecology of the Marine Benthos, Volume 6. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Orth, R. J., K. L. Heck, andR. J. Diaz. 1991. Littoral and intertidal systems in the mid-Atlantic coast of the United States, p. 193–209.In A. C. Mathieson and P. H. Nienhuis (eds.), Intertidal and Littoral Ecosystems, Volume 24. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Posey, M. H., T. D. Alphin, andL. Cahoon. 2006. Benthic community responses to nutrient enrichment and predator exclusion: Influence of background nutrient concentrations and interactive effects.Journal of Experimental Marine Biology and Ecology 330:105–118.

    Article  CAS  Google Scholar 

  • Posey, M. H., T. D. Alphin, L. Cahoon, D. Lindquist, andM. E. Becker. 1999. Interactive effects of nutrient additions and predation on infaunal communities.Estuaries 22:785–792.

    Article  Google Scholar 

  • Posey, M. H., T. D. Alphin, D. L. Meyer, andJ. M. Johnson. 2003. Benthic communities of common reedPhragmites australis and Marsh cordgrassSpartina alterniflora marshes in Chesapeake Bay.Marine Ecology Progress Series 261:51–61.

    Article  Google Scholar 

  • Posey, M. H. andA. H. Hines. 1991. Complex predator-prey interactions within an estuarine benthic community.Ecology 72: 2155–2169.

    Article  Google Scholar 

  • Raffaelli, D.. 2006. Biodiversity and ecosystem functioning: Issues of scale and trophic complexity.Marine Ecology Progress Series 311:285–294.

    Article  Google Scholar 

  • Rossi, F. andA. J. Underwood. 2002. Small-scale disturbance and increased nutrients as influences on intertidal macrobenthic assemblages: Experimental burial of wrack in different intertidal environment.Marine Ecology Progress Series 241:29–39.

    Article  Google Scholar 

  • Sacco, J. N., E. D. Seneca, andT. R. Wentworth. 1994. Infaunal community development of artificially established salt marshes in North Carolina.Estuaries 17:489–500.

    Article  Google Scholar 

  • Sardá, R., K. Foreman, andI. Valiela. 1995. Macroinfauna of a southern New England salt marsh: Seasonal dynamics and production.Marine Biology 121:431–445.

    Article  Google Scholar 

  • Sardá, R., I. Valiela, andK. Foreman. 1996. Decadal shifts in a salt marsh macroinfaunal community in response to sustained long-term experimental nutrient enrichment.Journal of Experimental Marine Biology and Ecology 205:63–81.

    Article  Google Scholar 

  • Silliman, B. R. andM. D. Bertness. 2002. A trophic cascade regulates salt marsh primary production.Proceedings of the National Academy of Sciences of the United States of America 99: 10500–10505.

    Article  CAS  Google Scholar 

  • StatSoft, Inc. 2006. Electronic Statistics Textbook, 1st edition. StatSoft Inc., Tulsa, Oklahoma: StatSoft.http://www.statsoft.com/textbook/stathome.html.

    Google Scholar 

  • Stocks, K. I. andJ. F. Grassle. 2001. Effects of microalgae and food limitation on the recolonization of benthic macrofauna into in situ saltmarsh-pond mesocosms.Marine Ecology Progress Series 221:93–104.

    Article  Google Scholar 

  • Stocks, K. I. andJ. F. Grassle. 2003. Benthic macrofaunal communities in partially impounded salt marshes in Delaware: Comparisons with natural marshes and responses to sediment exposure.Estuaries 26:777–789.

    Article  Google Scholar 

  • Sun, B. andJ. W. Fleeger. 1991. Spatial and temporal patterns of dispersion in meiobenthic copepods.Marine Ecology Progress Series 71:1–11.

    Article  Google Scholar 

  • Teal, J. M. 1986. The ecology of regularly flooded salt marshes of New England: A community profile. U.S. Fish and Wildlife Service Biological Report 85(7.4). Washington, D.C.

  • Virnstein, R. W., P. S. Mikkelsen, K. D. Cairns, andM. A. Capone. 1983. Seagrass beds versus sand bottoms: The trophic importance of their associated benthic invertebrates.Florida Scientist 46:363–381.

    Google Scholar 

  • Wardle, W. J., T. J. Minello, J. W. Webb, T. H. Wu, andJ. Jewett-Smith. 2001. Algal pigments, meiofauna, and macrofauna from two edaphic salt marsh microhabitats in Galveston Bay, Texas, USA.Wetlands 21:474–483.

    Article  Google Scholar 

  • West, T. L. 1985. Abundance and diversity of benthic macrofauna in subtributaries of the Pamlico River Estuary.The Journal of the Elisha Mitchell Scientific Society 101:142–159.

    Google Scholar 

  • Whaley, S. D. andT. J. Minello. 2002. The distribution of benthic infauna of a Texas salt marsh in relation to the marsh edge.Wetlands 22:753–766.

    Article  Google Scholar 

  • Whitlatch, R. B. 1981. The ecology of New England tidal flats: A community profile. U.S. Fish and Wildlife Service Biological Services Program FWS/OBS-81/01. Washington, D.C.

  • Waliela, I. 1995. Marine Ecological Processes, 2nd edition. Springer Verlag, New York.

    Google Scholar 

  • Von Bodungen, B. and R. K. Turner (eds.). 2001. Science and Integrated Coastal Management, Volume 8. Dahlem University Press, Berlin, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Johnson.

Additional information

Deceased April 19, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.S., Fleeger, J.W., Galván, K.A. et al. Worm holes and their space-time continuum: Spatial and temporal variability of macroinfaunal annelids in a Northern New England salt marsh. Estuaries and Coasts: JERF 30, 226–237 (2007). https://doi.org/10.1007/BF02700166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700166

Keywords

Navigation