Skip to main content

Patination of cherry wood and spruce wood with ethanolamine and surface finishes

La patination sur le bois de cerisier et d’épicéa grâce à l’emploi de l’éthanolamine et des procédés de finition surfacique

Patina-Bildung auf Kirschholz und Fichtenholz durch Oberflächenbehandlung mit Ethanolamin


The appearance of age or the so-called patina of cherry wood and spruce wood was obtained by treatment with ethanolamine vapours. Chemical changes in the treated wood were investigated by FT-IR spectroscopy, electron paramagnetic resonance and nitrogen content analysis. It was shown that the use of aggressive and toxic ammonia could be replaced by fuming with ethanolamine. Extensive colour stability experiments of patinated cherry wood that was coated with linseed oil varnish, linseed oil, beeswax or nitro-cellulose lacquer indicated that the described antiquing method represents a new possibility for producing various wood products with the appearance of age.


Le bois de cerisier et d’épicéa a pris un air antique, c’est à dire de la patination, après être traité à la vapeur d’éthanolamine. Des changements physiques dans le bois traité ont été investigués par le moyen de la spectroscopie TF-IR, de la résonance paramagnétique électronique et de l’analyse de la teneur en azote II a été montré que l’emploi de l’ammoniac qui est agressif et toxique pouvait être remplacé par une exposition à la vapeur d’éthanolamine. Des expériences extensives dans le domaine de la stabilité de la couleur du bois de cerisier patiné revêtu d’huile de lin, de vernis à l’huile de lin, de cire d’abeille ou de laque nitro-cellulosique ont indiqué que la méthode décrite de rendre plus antique l’apparence du bois représente une nouvelle possibilité dans le domaine de la production d’objets en bois qui aient l’air antique.


Kirsch- und Fichtenholz wurde durch Behandlung mit Ethanolamingas künstlich gealtert und die chemischen Veränderungen durch FT-IR-Spektroskopie, elektromagnetische Resonanz und Messungen des Stickstoffgehaltes ermittelt. Es zeigte sich, daß man die Verwendung von aggressivem und giftigem Ammoniak durch die Bedampfung mit Ethanolaminen ersetzen kann. Wir führten extensive Tests zur Farbstabilität von künstlich gealtertem Kirschbaumholz durch, das mit Leinöl, Leinöllack. Bienenwachs oder Nitrozelluloselack behandelt worden war. Die Tests zeigten, daß die Behandlung mit Ethanolaminen eine praktikable Methode ist, verschiedene künstlich gealterte Holzprodukte herzustellen.

This is a preview of subscription content, access via your institution.


  1. Leach N J,Modern Wood Finishing Techniques, 73–127, Stobart Davies Ltd, Hertford UK, 1993

    Google Scholar 

  2. Council Directive 92/32/EEC amending Directive 67/548/EEC ‘On the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances’,Official Journal,L 154, 1–29, 1992

    Google Scholar 

  3. Commission Directive 2000/6/EC adapting to technical progress Annexes II, III, VI and VII to Council Directive 76/768/EEC ‘On the approximation of the laws of the Member States relating to cosmetic products’,Official Journal,L 56, 42–6, 2000

    Google Scholar 

  4. Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction (English version), Organisation for the prohibition of chemical weapons, The Hague, 2000

  5. Schmid S, R D Webster and P D Evans,The Use of ESR Spectroscopy to Assess the Photostabilising Effects of Wood Preservatives, The International Research Group on Wood Preservation, Document Number IRG/WP 00-20186, 2000

  6. Brock T, M Groteklaes and P Mischke,European Coatings Handbook, 370–3, Vincentz Verlag, Hannover, 2000

    Google Scholar 

  7. Statgraphics Plus, Standard edition, version 4.0,The Software Package Manual, Manugistics Inc, Rockville USA, 1998

  8. Guidance For The Compilation of Safety Data Sheets For Fertilizer Materials’, Ammonia, Anhydrous’, July 2003

  9. International chemical safety cards, ‘Ethanolamine ICSC: 0152,, July 2003

  10. Parameswaran N, Roffael, ‘Kenntnisstand und Untersuchungsergebnisse zur Wirkung von Ammoniak auf Holzspäne’,Holz als Roh- und Werkstoff,42, 327–33, 1984

    Article  CAS  Google Scholar 

  11. Pawlak Z and A S Pawlak, ‘A review of infrared spectra from wood and wood components following treatment with liquid ammonia and solvated electrons in liquid ammonia’,Applied Spectroscopy Reviews,32, 349–83, 1997

    Article  CAS  Google Scholar 

  12. Humar M and M Petric, ‘Ethanolamine in impregnated wood’,Research Reports: Forest and Wood Science and Technology,61, 143–59, 2000

    Google Scholar 

  13. Humar M and M Petric,Determination of Ethanolamine in Impregnated Wood, The International Research Group on Wood Preservation, Document Number IRG/WP 00-20198, 2000

  14. Tolvaj L and O Faix, ‘Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements’,Holzforschung,49, 397–404, 1995

    CAS  Google Scholar 

  15. Ostmeyer J G, T J Elder and J E Winandy, ‘Spectroscopic analysis of southern pine treated with chromated copper arsenate. II. Diffuse reflectance fourier transform infrared spectroscopy (DRIFT)’,Journal of Wood Chemistry and Technology,9, 105–22, 1989

    Article  CAS  Google Scholar 

  16. Michell A J, A J Watson and H G Higgins, ‘An infrared spectroscopic study of delignification of eucalyptus regnans’,Tappi,48, 520–32, 1965

    CAS  Google Scholar 

  17. Zanuttini M, M Citroni and M J Martinez, ‘Application of diffuse reflectance infrared fourier transform spectroscopy to the quantitative determination of acetyl groups in wood’,Holzforschung,52, 263–7, 1998

    CAS  Article  Google Scholar 

  18. Sudiyani Y, S Tsujiyama, Y Imamura, M Takahashi, K Minato and H Kajita, ‘Chemical characteristics of surfaces of hardwood and softwood deteriorated by weathering’,Journal of Wood Science,45, 348–53, 1999

    Article  CAS  Google Scholar 

  19. Zhang J and D P Kamdem, ‘FTIR characterization of copper ethanolamine — wood interaction for wood preservation’,Holzforschung,54, 119–22, 2000.

    Article  CAS  Google Scholar 

  20. Craciun R and P D Kamdem, ‘XPS and FTIR applied to the study of waterborne copper naphthenate wood preservatives’,Holzforschung,51, 207–13, 1997

    CAS  Google Scholar 

  21. Yalinkilic M K, Y Imamura, M Takahashi, R Ilhan, A C Yalinkilic and Z Demirci, ‘FTIR studies of the effects of outdoor exposure on varnish — coated wood pretreated with CCB or water repellents’,Journal of Coatings Technology,71, 103–12, 1999

    Article  CAS  Google Scholar 

  22. Bentley J and G P A Turner,Introduction to Paint Chemistry and Principles of Paint Technology, (4th edition), Chapman & Hall, London, 1998

    Google Scholar 

  23. Hon D N S and S T Chang, ‘Surface degradation of wood by UV light’, Journal of Polymer Science,Polymer Chemistry Edition,22, 2227–41, 1984

    Article  CAS  Google Scholar 

  24. David N and S Hon, ‘Photochemistry of wood’,Wood and Cellulosic Chemistry, 525–57, (ed) D N S Hon and N Shiraishi, Marcel Dekker, New York, Basel, 1991

    Google Scholar 

  25. Grelier S, A Castellan and D P Kamdem, ‘Photoprotection of copper-amine-treated pine’,Wood and Fiber Science,32, 196–202, 2000

    CAS  Google Scholar 

  26. Rowell R M,The Chemistry of Solid Wood.Advances in Chemistry Series No207, 614, American Chemical Society, Washington DC, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M Petric.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petric, M., Kricej, B., Humar, M. et al. Patination of cherry wood and spruce wood with ethanolamine and surface finishes. Surface Coatings International Part B: Coatings Transactions 87, 195–201 (2004).

Download citation

  • Issue Date:

  • DOI:


  • Cherry wood
  • Spruce wood
  • ethanolamine
  • fuming
  • patina
  • surface finishing