Skip to main content
Log in

Two-dimensional numerical simulation of deflagration-to-detonation transition for a porous explosive using a model of a multivelocity heterogeneous medium

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The model of a multivelocity heterogeneous medium is used for one- and two-dimensional numerical calculations of the deflagration-to-detonation transition for charges of a porous explosive enclosed in a casing. Calculation results are compared with experimental data. Depending on the charge diameter, different explosion regimes — detonation and low-velocity explosive transformation — are registered in both the two-dimensional calculations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, et al.Deflagration-to-Detonation Transition for Condensed Systems [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. S. M. Bakhrakh, B. N. Krasnov, S. V. Tsykin, and C. A. Shaverdov, “Numerical study of deflagration-to-detonation transition for PETN,”Fiz. Goreniya Vzryva,32, No. 6, 96–107 (1996).

    Google Scholar 

  3. R. I. Nigmatulin,Fundamentals of the Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  4. R. I. Nigmatulin,Dynamics of Multiphase Media, Part 1, Hemisphere Publ., New York (1991).

    Google Scholar 

  5. P. S. Gough and F. J. Swarts, “Modeling heterogeneous two-phase reacting flow,”AIAA J. 17, No. 1, 17–25 (1979).

    MATH  Google Scholar 

  6. S. J. Hoffman and H. Kriert, “Fluid Mechanics of deflagration-to-detonation transition in porous explosive and propellant,”AIAA J.,19, No. 12, 1571–1579 (1981).

    Article  Google Scholar 

  7. D. Pilcher, M. Beckstead, L. Christensen, and A. King, in:Proc. 6th Symp. (Int.) on Detonation, August 22–27, Coronado, CA (1976).

  8. I. Sh. Akhatov and P. B. Vainshtein, “Unsteady regimes of combustion of porous powders,”Fiz. Goreniya Vzryva,19, No. 3, 53–61 (1983).

    Google Scholar 

  9. I. Sh. Akhatov and P. B. Vainshtein, “Deflagration-to-detonation transition in porous explosives,”Fiz. Goreniya Vzryva,20, No. 1, 70–77 (1984).

    ADS  Google Scholar 

  10. H. J. Verbeek, “Modelling of DDT in granular explosives,” in:The Eighth Symp. (Int.) on Detonation, Albuquerque, New Mexico, July 15–19 (1971).

    Google Scholar 

  11. M. R. Baer and J. W. Nunziato, “Compressive combustion of granular materials induced by low-velocity impact,” in:The Ninth Symp. (Int.) on Detonation, Columbia River Portland, Oregon, August 28–September 1 (1989).

  12. R. Saurel, M. Larini, and J. C. Loraud, “Numerical modelling of deflagration-to-detonation transition produced by laser impact on granular explosives,”Comp. Fluid Dyn. J.,1, No. 2, 155–174 (1992).

    Google Scholar 

  13. A. N. Ishchenko and Yu. P. Khomenko, “Effect of force interphase interaction on the characteristics of convective combustion of porous media,”Fiz. Goreniya Vzryva,33, No. 4, 65–77 (1997).

    Google Scholar 

  14. A. K. Kapila, S. F. Son, and D. S. Stewart, “Two-phase modeling of DDT: Structure of the velocity-relaxation zone,”Phys. Fluids,9, No. 12, 3885–3897 (1997).

    Article  ADS  Google Scholar 

  15. A. I. Korotkov, A. A. Sulimov, and A. V. Obmenin, et al. “Transition from combustion to detonation in porous explosives,”Fiz. Goreniya Vzryva,5, No. 3, 315–325 (1969).

    Google Scholar 

  16. A. V. Obmenin, A. I. Korotkov, A. A. Sulimov, and V. F. Dubovitsky, “Propagation character of predetonation regimes in porous explosives,”Fiz. Goreniya Vzryva,5, No. 4, 461–470 (1969).

    Google Scholar 

  17. N. V. Ashchepkov and V. V. Sten’gatch, “Predetonation stage of deflagration-to-detonation transition in PETN,”Fiz. Goreniya Vzryva,10, No. 6, 873–877 (1974).

    Google Scholar 

  18. Yu. V. Yaninkin, A. A. Shanin, N. P. Kovalev, et al., “The ÉGAK program package for calculations of two-dimensional multicomponent media,”Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 4, 69–75 (1993).

  19. S. N. Bakhrakh, Yu. P. Glagoleva, M. S. Samigulin, et al., “Calculation of gas-dynamic flows using the method of concentrations,”Dokl. Akad. Nauk SSSR,257, No. 3, 566–569 (1981).

    ADS  Google Scholar 

  20. N. S. Darova, O. A. Dibirov, G. V. Zharova, et al., “The ÉGAK program package. Lagrangian-Eulerian method for calculations of two-dimensional gas-dynamic flows of multicomponent media,”Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 2, 51–58 (1994).

  21. M. S. Samigulin, Yu. V. Yanilkin, E. S. Gavrilova, and A. A. Shanin, “A method for numerical modeling of two-dimensional flows of disperse media in a continuum approximation,”Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 1, 3–8 (1995).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromFizika Goreniya i Vzryva, Vol. 36, No. 3, pp. 97–106, May–June, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dibirov, O.A., Tsikin, S.V. & Yanilkin, Y.V. Two-dimensional numerical simulation of deflagration-to-detonation transition for a porous explosive using a model of a multivelocity heterogeneous medium. Combust Explos Shock Waves 36, 374–383 (2000). https://doi.org/10.1007/BF02699390

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699390

Keywords

Navigation