Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. E. Ballico, F. Catanese, C. Ciliberto (Eds.), Classification of Irregular Varieties,Lect. Notes in Math.,1515, Springer, 1970.

  2. A. Borel, Compact Clifford-Klein forms of symmetric spaces,Topology,2 (1968), 111–122.

    Article  Google Scholar 

  3. A. Borel,Introduction aux groupes arithmétiques, Paris, Hermann, 1969.

    MATH  Google Scholar 

  4. J. Carlson andD. Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces,Publ. Math. IHES,69 (1989), 173–201.

    MATH  Google Scholar 

  5. P. Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques,C. R. Acad. Sci. Paris, série A–B,287 (1978), 203–208.

    MATH  Google Scholar 

  6. M. Goresky andR. MacPherson,Stratified Morse Theory, Springer Verlag, 1988.

  7. H. Grauert, Über Modifikationen und exzeptionnelle analytische Mengen,Math. Annalen,146 (1962), 331–368.

    Article  MATH  Google Scholar 

  8. M. Gromov, Sur le groupe fondamental d’une variété kählérienne,C. R. Acad. Sc. Paris, série 1,308 (1980), 67–70.

    Google Scholar 

  9. R. Hartshorne, Ample Subvarieties of Algebraic Varieties,Lect. Notes in Math. 156, Springer, 1970.

  10. F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch,Symposium Internacional de Topología Algebraica, México, 1956, 129–144.

  11. S. L. Kleiman, Towards a numerical theory of ampleness,Ann. of Math.,84 (1966), 293–344.

    Article  Google Scholar 

  12. K. Kodaira, On Kähler varieties of restricted type,Ann. of Math.,60 (1954), 28–48.

    Article  Google Scholar 

  13. A. I. Mal’cev, On the faithful representation of infinite groups by matrices,Math. Sbornik,9 (1940), 405–422; English translation,AMS Transl.,45 (1965), 1–18.

    Google Scholar 

  14. G. A. Margulis, Finiteness of quotient groups of discrete subgroups,Func. Anal. Appl.,13 (1979), 178–187.

    Google Scholar 

  15. G. Mess, The Torelli group for genus 2 and 3 surfaces,Topology,31 (1992), 775–790.

    Article  MATH  Google Scholar 

  16. J. Millson, Real vector bundles with discrete structure group,Topology,18 (1979), 83–89.

    Article  MATH  Google Scholar 

  17. G. D. Mostow,Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. Studies 78, Princeton Univ. Press, 1973.

  18. M. S. Raghunathan, Torsion in cocompact lattices in coverings of Spin (2,n),Math. Annalen,266 (1984), 403–419.

    Article  MATH  Google Scholar 

  19. J.-P. Serre, Arbres, amalgames, SL2,Astérisque, no 46, 1977; english translation :Trees, Springer, 1980.

  20. D. Toledo, Examples of fundamental groups of compact Kähler manifolds,Bull. London Math. Soc.,22 (1990), 339–343.

    Article  MATH  Google Scholar 

  21. O. Zariski,Algebraic Surfaces (Second Supplemented Edition), Springer, 1971.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the National Science Foundation.

About this article

Cite this article

Toledo, D. Projective varieties with non-residually finite fundamental group. Publications Mathématiques de l’Institut des Hautes Scientifiques 77, 103–119 (1993). https://doi.org/10.1007/BF02699189

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699189

Keywords

Navigation