Advertisement

Countingp-groups and nilpotent groups

  • Marcus du Sautoy
Article

Keywords

Normal Subgroup Automorphism Group Zeta Function Nilpotent Group Finite Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Blackburn, On a special class ofp-groups,Acta Math. 100 (1958), 49–92.CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. M. Bryant andJ. R. J. Groves, Algebraic groups of automorphisms of nilpotent groups and Lie algebras,J. London Math. Soc. 33 (1986), 453–466.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. Denef, The rationality of the Poincaré series associated to thep-adic points on a variety,Invent. Math. 77 (1984), 1–23.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Denef andL. van den Dries,p-adic and real subanalytic sets,Annals of Math. 128 (1988), 79–138.CrossRefGoogle Scholar
  5. [5]
    J. Denef andF. Loeser, Motivic Igusa zeta functions,J. Algebraic Geom.,7 (1998), 505–537.zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Denef andF. Loeser, Germs of arcs on singular algebraic varieties and motivic integration,Invent. Math.,135 (1999), 201–232.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. D. Dixon, M. P. F. du Sautoy, A. Mann andD. Segal, Analytic pro-p groups, Second Edition,Cambridge Studies in Advanced Mathematics,61, Cambridge, CUP, 1999.Google Scholar
  8. [8]
    M. P. F. du Sautoy, Finitely generated groups,p-adic analytic groups and Poincaré series,Annals of Math. 137 (1993), 639–670.zbMATHCrossRefGoogle Scholar
  9. [9]
    M. P. F. du Sautoy, Zeta functions and counting finitep-groups,Electronic Research Announcements of the American Math. Soc.,5 (1999), 112–122.zbMATHCrossRefGoogle Scholar
  10. [10]
    M. P. F. duSautoy, A nilpotent group and its elliptic curve: non-uniformity of local zeta functions of groups, MPI preprint 2000-85. To appear inIsrael J. of Math. 126.Google Scholar
  11. [11]
    M. P. F. duSautoy, Counting subgroups in nilpotent groups and points on elliptic curves, MPI preprint 2000-86.Google Scholar
  12. [12]
    M. P. F. duSautoy, Natural boundaries for zeta functions of groups, preprint.Google Scholar
  13. [13]
    M. P. F. du Sautoy andF. J. Grunewald, Analytic properties of Euler products of Igusa-type zeta functions and subgroup growth of nilpotent groups,C. R. Acad. Sci. Paris 329, Série 1 (1999), 351–356.zbMATHGoogle Scholar
  14. [14]
    M. P. F. du Sautoy andF. J. Grunewald, Analytic properties of zeta functions and subgroup growth,Annals of Math. 152 (2000), 793–833.zbMATHCrossRefGoogle Scholar
  15. [15]
    M. P. F. duSautoy andF. J. Grunewald, Uniformity for 2-generator free nilpotent groups, in preparation.Google Scholar
  16. [16]
    M. P. F. duSautoy andF. Loeser, Motivic zeta functions of infinite dimensional Lie algebras, École polytechnique, preprint series 2000-12.Google Scholar
  17. [17]
    M. P. F. du Sautoy andA. Lubotzky, Functional equations and uniformity for local zeta functions of nilpotent groups,Amer. J. Math. 118 (1996), 39–90.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. P. F. du Sautoy, J. J. McDermott andG. C. Smith, Zeta functions of crystallographic groups and analytic continuation,Proc. London Math. Soc. 79 (1999), 511–534.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. P. F. du Sautoy andD. Segal, Zeta functions of groups, inNew horizons in pro-p groups.Progress in Mathematics, vol.184 (ed M. P. F. du Sautoy, D. Segal and A. Shalev), p. 249–286. Boston, Birkhäuser (2000).Google Scholar
  20. [20]
    M. D. Fried andM. Jarden,Field Arithmetic, Springer-Verlag, Berlin, Heidelberg, New York, 1986.zbMATHGoogle Scholar
  21. [21]
    F. J. Grunewald, D. Segal andG. C. Smith, Subgroups of finite index in nilpotent groups,Invent. Math. 93 (1988), 185–223.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    G. Higman, Enumeratingp-groups, I,Proc. London Math. Soc. 10 (1960), 24–30.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    G. Higman, Enumeratingp-groups, II,Proc. London Math. Soc. 10 (1960), 566–582.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    K. Ireland andM. Rosen, A classical introduction to modern number theory, Second Edition,Graduate texts in mathematics 84, Springer-Verlag, New York, Berlin, Heidelberg, 1993.Google Scholar
  25. [25]
    S. Lang,Algebra, Addison-Wesley, Reading, MA, 1965.zbMATHGoogle Scholar
  26. [26]
    C. R. Leedham-Green andS. McKay, Onp-groups of maximal class II,Quart. J. Math. Oxford (2)29 (1978), 175–186.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    C. R. Leedham-Green andS. McKay, Onp-groups of maximal class III,Quart. J. Math. Oxford (2)29 (1978), 281–299.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    C. R. Leedham-Green andM. F. Newman, Space groups and groups of prime-power order I,Arch. Math. (Basel)35 (1980), 193–202.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    C. R. Leedham-Green, The structure of finitep-groups,J. London Math. Soc. 50 (1994), 49–67.zbMATHMathSciNetGoogle Scholar
  30. [30]
    W. Magnus, A. Karras andD. Solitar,Combinatorial Group Theory, Wiley, Chichester, UK, 1966.zbMATHGoogle Scholar
  31. [31]
    M. F. Newman, Groups of prime-power order, Groups-Canberra 1989,Lecture Notes in Math.,1456 Springer-Verlag (1990), 49–62.CrossRefGoogle Scholar
  32. [32]
    M. F. Newman andE. A. O’Brien, Classifying 2-groups by coclass,Trans. Amer. Math. Soc. 351 (1999), 131–169.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    V. P. Platonov, The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups,Math. USSR-Izv. 3 (1969), 1139–1147.CrossRefGoogle Scholar
  34. [34]
    V. P. Platonov, Addendum,Math. USSR-Izv. 4 (1970), 784–786.zbMATHCrossRefGoogle Scholar
  35. [35]
    V. P. Platonov andA. S. Rapinchuk,Algebraic Groups and Number Theory,Pure and Applied Mathematics 139, London, Academic Press, 1994.zbMATHGoogle Scholar
  36. [36]
    D. Segal, Polycyclic Groups,Cambridge tracts in mathematics,82, CUP (1983).Google Scholar
  37. [37]
    A. Shalev, The structure of finitep-groups: effective proof of the coclass conjectures,Invent. Math. 115 (1994), 315–345.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    C. C. Sims, Enumeratingp-groups,Proc. London Math. Soc. 15 (1965), 151–166.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    R. P. Stanley, Enumerative Combinatorics, vol. 1,Cambridge Studies in Advanced Mathematics,49, CUP, 1997.Google Scholar

Copyright information

© Publications Mathematiques de L’I.H.E.S 2000

Authors and Affiliations

  • Marcus du Sautoy
    • 1
  1. 1.DPMMS, Centre for Mathematical SciencesCambridgeUK

Personalised recommendations