Noise sensitivity of Boolean functions and applications to percolation

  • Itai Benjamini
  • Gil Kalai
  • Oded Schramm


It is shown that a large class of events in a product probability space are highly sensitive to noise, in the sense that with high probability, the configuration with an arbitrary small percent of random errors gives almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to be noise-stable. Several necessary and sufficient conditions for noise sensitivity and stability are given.

Consider, for example, bond percolation on ann+1 byn grid. A configuration is a function that assigns to every edge the value 0 or 1. Let ω be a random configuration, selected according to the uniform measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges ℓ with ω(ℓ)=1. By duality, the probability for having a crossing is 1/2. Fix an ɛ ∈ (0, 1). For each edge ℓ, let ω′(ℓ)=ω(ℓ) with probability 1 − ɛ, and ω′(ℓ)=1 − ω(ℓ) with probability ɛ, independently of the other edges. Letp(τ) be the probability for having a crossing in ω, conditioned on ω′ = τ. Then for alln sufficiently large,P{τ : |p(τ) − 1/2| > ɛ}<ɛ.


Boolean Function Fourier Coefficient Noise Sensitivity Polynomial Size Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Ambjorn, B. Durhuus andT. Jonsson,Quantum Geometry, Cambridge University Press, Cambridge, 1997.Google Scholar
  2. [2]
    N. Alon andJ. Spencer,The Probabilistic Method, Wiley, New York (1992).zbMATHGoogle Scholar
  3. [3]
    W. Beckner, Inequalities in Fourier analysis,Annals of Math. 102 (1975), 159–182.CrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Ben-or andN. Linial, Collective coin flipping, inRandomness and Computation (S. Micali, ed.), Academic Press, New York (1990), pp. 91–115. Earlier version: Collective coin flipping, robust voting games, and minima of Banzhaf value, Proc. 26th IEEE Symp. on the Foundation of Computer Science (1985), 408–416.Google Scholar
  5. [5]
    I. Benjamini andO. Schramm, Conformal invariance of Voronoi percolation,Commun. Math. Phys.,197 (1998), 75–107.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    I. Benjamini, G. Kalai andO. Schramm, Noise sensitivity, concentration of measure and first passage percolation, in preparation.Google Scholar
  7. [7]
    A. Bonami, Etude des coefficients Fourier des fonctions de Lp(G),Ann. Inst. Fourier,20 (1970), 335–402.zbMATHMathSciNetGoogle Scholar
  8. [8]
    R. Boppana, Threshold functions and bounded depth monotone circuits,Proceedings of 16th Annual ACM Symposium on Theory of Computing (1984), 475–479.Google Scholar
  9. [9]
    R. Boppana, The average sensitivity of bounded depth circuits,Inform. Process. Lett. 63 (1997), 257–261.CrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson andN. Linial, The influence of variables in product spaces,Isr. J. Math. 77 (1992), 55–64.zbMATHMathSciNetGoogle Scholar
  11. [11]
    J. Bourgain andG. Kalai, Influences of variables and threshold intervals under group symmetries,Geom. Funct. Anal.,7 (1997), 438–461.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. Bruck, Harmonic analysis of polynomial threshold functions.SIAM J. Discrete Math. 3 (1990), 168–177.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. Bruck andR. Smolensky, Polynomial threshold functions, AC0 functions, and spectral norms.SIAM J. Comput. 21 (1992), 33–42.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Bunde andS. Havlin (ed.s’),Fractals and Disordered Systems, Springer 1991.Google Scholar
  15. [15]
    J. T. Chayes, L. Chayes, D. S. Fisher andT. Spencer, Finite-size scaling and correlation length for disordered systems,Phys. Rev. Lett. 57 (1986), 2999–3002.CrossRefMathSciNetGoogle Scholar
  16. [16]
    E. Friedgut, Boolean functions with low average sensitivity,Combinatorica 18 (1998), 27–36.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    E. Friedgut, Necessary and sufficient conditions for sharp thresholds of graphs properties and thek-sat problem,Jour. Amer. Math. Soc. 12 (1999), 1017–1054.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    E. Friedgut andG. Kalai, Every monotone graph property has a sharp threshold,Proc. Amer. Math. Soc. 124 (1996), 2993–3002.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    G. Grimmett,Percolation, Springer-Verlag, Berlin (1989).zbMATHGoogle Scholar
  20. [20]
    O. Haggstrom, Y. Peres andJ. E. Steif, Dynamical percolation,Ann. IHP 33 (1997), 497–528.MathSciNetGoogle Scholar
  21. [21]
    J. Håstad, Almost optimal lower bounds for small depth circuits, inRandomness and Computation,5, ed. S. Micali, (1989), 143–170.Google Scholar
  22. [22]
    J. Håstad andM. Goldmann, On the power of small-depth threshold circuits,Computational Complexity,1 (1991), 113–129.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. Kahn, G. Kalai andN. Linial, The influence of variables on boolean functions,Proc. 29-th Ann. Symp. on Foundations of Comp. Sci., (1988), 68–80.Google Scholar
  24. [24]
    H. Kesten, Scaling relations for 2D-percolation,Comm. Math. Phys. 109 (1987), 109–156.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    H. Kesten andY. Zhang, Strict inequalites for some critical exponents in 2D-percolation.J. Statist. Phys. 46 (1987), 1031–1055.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    R. P. Langlands, P. Pouliot andY. Saint-aubin, Conformal invariance in two-dimensional percolation,Bull. Amer. Math. Soc. (N.S.) 30 (1994), 1–61.zbMATHMathSciNetGoogle Scholar
  27. [27]
    N. Linial, Y. Mansour andN. Nisan, Constant depth circuits, Fourier transform, and learnability,J. Assoc. Comput. Mach. 40 (1993), 607–620.zbMATHMathSciNetGoogle Scholar
  28. [28]
    V. V. Petrov,Limit theorems of probability theory, Oxford University Press, (1995).Google Scholar
  29. [29]
    L. Russo, A note on percolation,ZW. 43 (1978), 39–48.zbMATHCrossRefGoogle Scholar
  30. [30]
    P. Seymour andD. Welsh, Percolation probabilities on the square lattice. Advances in Graph Theory.Ann. Discrete Math. 3 (1978), 227–245.zbMATHMathSciNetGoogle Scholar
  31. [31]
    M. Talagrand, On Russo’s approximate zero-one law,Ann. of Prob. 22 (1994), 1576–1587.zbMATHMathSciNetGoogle Scholar
  32. [32]
    M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces,Publ. I.H.E.S.,81 (1995), 73–205.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Talagrand, How much are increasing sets positively correlated?Combinatorica 16 (1996), 243–258.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    B. Tsirelson, Fourier-Walsh coefficients for a coalescing flow (discrete time), preprint, math.PR/9903068.Google Scholar
  35. [35]
    B. Tsirelson, The Five noises, preprint.Google Scholar
  36. [36]
    A. Yao, Circuits and local computation,Proceedings of 21st Annual ACM Symposium on Theory of Computing, (1989), 186–196.Google Scholar

Copyright information

© Publications Mathematiques de L’I.H.E.S. 1999

Authors and Affiliations

  • Itai Benjamini
    • 1
  • Gil Kalai
    • 2
  • Oded Schramm
    • 3
  1. 1.The Weizmann Institute of ScienceRehovotIsrael
  2. 2.The Hebrew University, Givat RamJerusalemIsrael
  3. 3.The Wiezmann Institute of ScienceRehovotIsrael

Personalised recommendations