Skip to main content
Log in

Features of nonequilibrium processes of titrogen oxide formation behind strong shock waves in air

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The kinetics of NO and NO2 of behind shock fronts propagating in air are analyzed. It is shown that in certain cases it is necessary to use fairly detailed chemical reaction schemes involving not only N2, O2, NO, N, and O, but also NO2, N2O, H2, OH, and H and to take into account the mutual effects of vibrational relaxation and chemical transformations. It is established that neglecting the chemical processes involving NO2 only can lead to significant errors in the length of the relaxation zone (up to 25 times), the gasdynamic parameters (up to 20%), and the NO concentration (up to 3 times).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Gostintsev and Yu. V. Gamera, “Generation of nitrogen oxides in a strong air explosion. Interaction between NO x and the ozone layer,”Chim. Fiz.,13, No. 2, 109 (1994).

    Google Scholar 

  2. G. C. Goldenbaum and R. R. Dickerson, “Nitric oxide production by lightning discharges,”J. Geophys. Res.,98, No.D10, 18.333 (1993).

    ADS  Google Scholar 

  3. C. Park,Nonequilibrium Hypersonic Aerothermodynamics, Wiley, N. Y. (1990).

    Google Scholar 

  4. G. A. Tirsky, “Up-to-date gasdynamic models of hypersonic aerodynamics and heat transfer with real gas properties,”Annu. Rev. Fluid Mech.,25, 151 (1993).

    ADS  MathSciNet  Google Scholar 

  5. H. K. Cheng and G. Emanuel, “Perspective on hypersonic nonequilibrium flow,”AIAA Journal,33, 386 (1995).

    ADS  Google Scholar 

  6. O. Knab, T. H. Gogel, H.-H. Frühauf, and E. W. Messerschmid, “CVCV-model validation by means of radiative heating calculations,”AIAA Paper, No. 95-0623 (1995).

  7. O. Knab, H.-H. Frühauf, and E. W. Messerschmid, “Theory and validation of physically consistent coupled vibration-chemistry vibration model,”J. Thermophys. and Heat Transfer,9, No. 2, 219 (1995).

    Article  ADS  Google Scholar 

  8. S. A. Losev, V. N. Makarov, and M. Yu. Pogosbekyan, “Model of physico-chemical kinetics behind the front of a very strong shock wave in air,”Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 169 (1995).

  9. A. I. Osipov and A. V. Uvarov, “Kinetic and gasdynamic processes in nonequilibrium molecular physics,”Usp. Fiz. Nauk,162, No. 11, 1 (1992).

    Article  Google Scholar 

  10. E. V. Stupochenko, S. A. Losev, and A. I. Osipov,Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  11. E. A. Kovach, S. A. Losev, and A. L. Sergievskaya, “Two-temperature chemical kinetics models for describing molecular dissociation in strong shock waves,”Chim. Fiz.,14, No. 9, 44 (1995).

    Google Scholar 

  12. S. A. Losev, A. L. Sergievskaya, V. D. Rusanov at el., “Nonequilibrium factor in two-temperature dissociation kinetics behind a shock front,”Dokl. Ros. Akad Nauk,346, 192 (1996).

    Google Scholar 

  13. N. M. Kuznetsov,Kinetics of Monomolecular Reactions [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  14. N. G. Dautov and A. M. Starik, “Influence of excitation of molecular vibrations on the dynamics of combustion of a H2 + O2 mixture behind a detonation shock wave,”Zh. Prikl. Mekh. Tekh. Fiz.,36, No. 6, 25 (1995).

    MATH  Google Scholar 

  15. T. Shimazaki, “The photochemical time constants of minor constituents and their families in the middle atmosphere,”J. Atmosph. Terr. Phys.,46, No. 2, 173 (1984).

    Article  ADS  Google Scholar 

  16. A. M. Starik and N. G. Dautov, “Influence of the vibrational excitation of molecules on the dynamics of combustion of mixtures,”Kinetika i Kataliz,37, 346 (1996).

    Google Scholar 

  17. V. N. Makarov, “Kinetics of physico-chemical processes in high-temperature air,”Teplofiz. Vysok. Temp.,33, 583 (1995).

    Google Scholar 

  18. Yu. A. Kulagin, “Active media for gasdynamic lasers,”Tr. FIAN,107, 110 (1979).

    Google Scholar 

  19. V.A. Sal’nikov and A. M. Starik, “Numerical analysis of energy characteristics of gasdynamic lasers operating on hydrocarbon fuel combustion products,”Teplofiz. Vysok. Temp.,33, 121 (1995).

    Google Scholar 

Download references

Authors

Additional information

Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 132–144, January–February, 1999.

The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-02-18377).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starik, A.M., Titova, N.S. Features of nonequilibrium processes of titrogen oxide formation behind strong shock waves in air. Fluid Dyn 34, 110–120 (1999). https://doi.org/10.1007/BF02698759

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698759

Keywords

Navigation