Skip to main content
Log in

Mathematical modeling of the distribution of a finely dispersed admixture in a turbulent tube-jet flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

An attempt to numerically model the specific characteristics of the distribution of small solid particles in a turbulent tube-jet flow is presented. The numerical results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Laats and F. A. Frishman, “On the assumptions used in calculating of a two-phase jet,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 186 (1970).

  2. S. I. Navoznov, A. A. Pavel’ev, A. S. Mul’gi, and M. K. Laats, “Effect of initial slip on admixture scattering in a two-phase jet,” In:Turbulent Two-Phase Flows [in Russian], AS ESSR, 149 (1979).

  3. M. Hussainov, A. Kartushinsky, A. Mul’gi, U. Rudi, “Gas-solid flow with a slip velocity of particles in a horizontal channel,”J. Aerosol Sci.,25, No. 1, 41 (1996).

    Article  Google Scholar 

  4. A. I. Kartushinskii, “Transport of an inertial admixture in a turbulent two-phase jet,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 36 (1984).

  5. G. N. Abramovich, V. I. Bazhzanov, and T. A. Girshovich, “Turbulent jet with heavy particles,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 41 (1972).

    Google Scholar 

  6. A. P. Vasil’kov, “The calculation of a turbulent isobaric two-phase jet,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 57 (1976).

    Google Scholar 

  7. W. K. Melville and K. N. C. Bray, “A model of the two-phase turbulent jet,”Int. J. Heat Mass Transfer,22, No. 5, 647 (1979).

    Article  MATH  ADS  Google Scholar 

  8. M. K. Laats and A. S. Mul’gi, “Experimental study of the kinematic pattern of pipe flow with finely dispersed particles,”Turbulent Two-Phase Flows [in Russian], AS ESSR, 32 (1979).

  9. T. J. Kramer and S. A. Depew, “Experimentally determined mean flow characteristics of gas-solid suspensions,”Transactions of the ASME. Ser. D,94, No. 2 (1972).

    Google Scholar 

  10. Y. Tsuji, Y. Morikava, and H. Shiomi, “LDV measurement of an air-solid two-phase flow in a vertical pipe,”J. Fluid Mech.,139, 417 (1984).

    Article  ADS  Google Scholar 

  11. J. D. Kulick, J. R. Fessler, and J. K. Eaton, “Particle response and turbulence modification in fully developed channel flow,”J. Fluid. Mech.,277, 109 (1994).

    Article  ADS  Google Scholar 

  12. M. Y. Louge, E. Mastorakos, and J. T. Jenkins, “The role of particle collisions in pneumatic transport,”J. Fluid Mech.,231, 345 (1991).

    Article  MATH  ADS  Google Scholar 

  13. J. He and O. Simonin, “Non-equilibrium prediction of the particle stress tensor in vertical pneumatic conveying,”EDF Report HE-44, No. 15, 1 (1993).

  14. A. A. Shraiber, L. B. Gavin, V. A. Naumov, and V. P. Yatsenko,Turbulent Gas-Solid Flows [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  15. R. I. Nigmatulin,Fundamentals of Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  16. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases, Cambridge Univ. Press, Cambridge (1939).

    Google Scholar 

  17. G. I. Trushin and N. N. Lipatov, “Probability of collision of suspended particles in directed motion,”Izv. Vuzov, Pishch. Tekhn., No. 5, 110 (1963).

    Google Scholar 

  18. E. P. Mednikov,Turbulent Transport and Deposition of Aerosols [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  19. R. Mei, “An approximate expression for the shear lift force on a spherical particle at finite Reynolds number,”Intern. J. Multiphase Flow,18, No. 1, 145 (1992).

    Article  Google Scholar 

  20. G. N. Abramovich, et al.,Turbulent Jet Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  21. F. Durst and A. K. Rastogi, “Calculation of turbulent boundary layer flows with drag-reducing polymer additives,”Phys. Fluids, No. 20, 1975 (1977).

  22. S. Yu. Krasheninnikov, “Toward the calculation of axisymmetric swirling and nonswirling turbulent jets,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 71 (1972).

  23. G. L. Babukha and A. A. Shraiber,Interaction of Polydisperse Particles in Two-Phase Flows [in Russian], Naukova Dumka, Kiev (1972).

    Google Scholar 

  24. M. Hussainov, et al, “Experimental and theoretical study of the distribution of mass concentration of solid particles in the two-phase laminar boundary layer on a flat plate,”Int. J. Multiphase Flow,21, No. 6, 1141 (1995).

    Article  MATH  Google Scholar 

  25. M. Sommerfeld and G. Zivkovic, “Recent advances in the numerical simulation of pneumatic conveying through pipe systems,”Comput. Methods in Appl. Sci., Elsevier, Amsterdam, 201 (1992).

    Google Scholar 

Download references

Authors

Additional information

Tallin. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 76–86, March–April, 1998.

The theoretical part of the work was supported financially by the Government of Estonia and the International Science Foundation (grant LK 6100).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartushinskii, A.I., Mul’gi, A.S., Frishman, F.A. et al. Mathematical modeling of the distribution of a finely dispersed admixture in a turbulent tube-jet flow. Fluid Dyn 33, 215–223 (1998). https://doi.org/10.1007/BF02698705

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698705

Keywords

Navigation