Skip to main content
Log in

Thermodynamics of deformation of latex blend coatings and its implications for tailoring their properties

  • Technical Articles
  • Published:
Journal of Coatings Technology

Abstract

Acrylic-based latex blend coatings, comprising a hard (Tg=45°C) and soft (Tg=−5°C) phases are evaluated in terms of the total energy they absorb before failure in a tensile test. Simultaneous measurement of the work and heat of deformation using a novel technique of differential gas pressure stretch calorimetry enables an estimate of change in their internal energy by application of the first law of thermodynamics. As the hard phase content of the blend is increased from 0–100%, its stiffness and tenacity increase, while the toughness (i.e., the energy to failure) under-goes a maximum at an intermediate composition. A partitioning of the mechanical work into heat and internal energy over the complete range of blend composition highlights the result that a simultaneous maximization of the heat dissipation and energy absorption is necessary to maximize blend toughness. This provides a new frame-work in which the properties of blend systems can be tailored in terms of their stiffness and toughness to design improved coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Provder, T., Winnik, M.A., and Urban, M.W. (Eds.),ACS Symposium Series, Volume 648, American Chemical Society, Washington, D.C., 1996.

    Google Scholar 

  2. Lyon, R.E., “Thermodynamics of Deformation,” Ph.D. Thesis, University of Massachusetts, Amherst, 1985.

    Google Scholar 

  3. Adams, G.W., “The Thermodynamics of Deformation for Thermoplastic Polymers,” Ph.D. Thesis, University of Massachusetts, Amherst, 1987.

    Google Scholar 

  4. Adams, G.W. and Farris, R.J.,Polymer, 30, 1824 (1989).

    Article  CAS  Google Scholar 

  5. Gough, J.,Proc. Lit. Phil. Soc., Manchester, 2 ser., 1,288 (1805).

  6. Lord Kelvin,Quarterly J. Math, 1,57 (1857).

  7. Joule, J.P.,Trans. Roy. Soc., London, A149,91 (1859).

    Google Scholar 

  8. Joule, J.P.,Phil. Mag., 14, 227 (1857).

    Google Scholar 

  9. Taylor, G.I. and Quinney, H.,Proc. Roy. Soc. London, A 143, 307 (1934).

    ADS  Google Scholar 

  10. Quinney, H. and Taylor, G.I.,Proc. Roy. Soc. London, A 163, 157 (1937).

    ADS  Google Scholar 

  11. Duvdevani, I.J., Biesenberger, J.A., and Gogos, C.G.,Polymer Eng. & Sci., 9 (4), 250 (1969).

    Article  CAS  Google Scholar 

  12. Duvdevani, I.J., Biesenberger, J.A., and Gogos, C.G.,Polymer Eng. & Sci., 10 (6), 320 (1979).

    Article  Google Scholar 

  13. Calvet, E. and Prat, H.,Recent Progress in Microcalorimetry, Macmillan Co., New York, 1963.

    Google Scholar 

  14. Godovsky, Y.K.,Thermophysical Properties of Polymers, Springer-Verlag, New York, 1992.

    Google Scholar 

  15. Muller, F.H. and Engelter, A.,Rheol. Acta., 1, 39 (1958).

    Article  CAS  Google Scholar 

  16. Lyon, R.E. and Farris, R.J.,Rev. Sci. Instrum., 57 (8), 1640 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Lyon, R.E. and Farris, R.J., U.S. Patent No. 4,761,078 (1988).

  18. Lyon, R.E. and Raboin, P.J.,J. Therm. Anal., 44, 777 (1995).

    Article  CAS  Google Scholar 

  19. Godovsky, Y.K.,Polymer, 22, 75 (1981).

    Article  Google Scholar 

  20. Araimo, L., de Candia, F., and Vittoria, V.,Polymer, 19, 731 (1978).

    Article  CAS  Google Scholar 

  21. Price, C., Evans, K.A., and de Candia, F.,Polymer, 14, 338 (1973).

    Article  CAS  Google Scholar 

  22. Araimo, L., de Candia, F., and Vittoria, V.,Polymer, 17, 731 (1976).

    Article  Google Scholar 

  23. Godovsky, Y.K., Bessonova, N.P., and Mironova, N.N.,Colloid Polymer Sci., 264, 224 (1986).

    Article  Google Scholar 

  24. Godovsky, Y.K., Bessonova, N.P., and Mironova, N.N.,Colloid Polymer Sci., 267, 414 (1989).

    Article  Google Scholar 

  25. Godovsky, Y.K., and Bessonova, N.P.,Colloid & Polymer Sci., 261, 645 (1983).

    Article  Google Scholar 

  26. Dexi, W., Lyon, R.E., and Farris, R.J.,Chinese J. Polymer Sci., 3, 262 (1987).

    Google Scholar 

  27. Godovsky, Y.K.,Makromol. Chem. Suppl., 6, 117 (1984).

    Article  Google Scholar 

  28. Godovsky, Y.K., and Bessonova, N.P.,Thermochimica Acta, 247, 19 (1994).

    Article  CAS  Google Scholar 

  29. Godovsky, Y.K.,Colloid Polymer Sci., 260, 461 (1982).

    Article  Google Scholar 

  30. Salamatina, O.B., Hohne, G.W.H., Rudnev, S.N., and Oleinik, E.F.,Thermochimica Acta, 241, 1 (1994).

    Article  Google Scholar 

  31. Lyon, R.E. and Farris, R.J.,Polymer Eng. Sci., 24 (11), 908 (1984).

    Article  CAS  Google Scholar 

  32. Goldfarb, J.L., Farris, R.J., Chai, Z., and Karasz, F.E.,Mat. Res. Soc. Symp. Proc., 227, 335 (1991).

    CAS  Google Scholar 

  33. Goldfarb, J.L. and Farris, R.J.,J. Adhesion, 35, 233 (1991).

    Article  CAS  Google Scholar 

  34. Goldfarb, J.L., “A Calorimetric Evaluation of the Peel Adhesion Test,” Ph.D. Thesis, University of Massachusetts, Amherst, 1992.

    Google Scholar 

  35. Lyon, R.E. and Farris, R.J.,Thermochimica Acta, 161, 287 (1990).

    Article  CAS  Google Scholar 

  36. Lyon, R.E. and Abramowitz, A.,Fire Mat., 19, 11 (1995).

    Article  CAS  Google Scholar 

  37. Hashin, Z.,J. Appl. Mech., 29, 143 (1962).

    MATH  CAS  MathSciNet  Google Scholar 

  38. Hashin, Z. and Shtrikman, S.,J. Mech. Phys. Solids, 11, 127 (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Hill, R.,J. Mech. Phys. Solids, 13, 213 (1965).

    Article  ADS  Google Scholar 

  40. Budiansky, B.,J. Mech. Phys. Solids, 13, 223 (1965).

    Article  ADS  Google Scholar 

  41. Hsu, W.Y., Giri, M.R., and Ikeda, R.M.,Macromolecules, 15, 1210 (1982).

    Article  ADS  CAS  Google Scholar 

  42. Hsu, W.Y. and Wu, S.,Polymer Eng. Sci., 33 (5), 293 (1993).

    Article  CAS  Google Scholar 

  43. de Gennes, P.G.,J. de Physique-letters, 37, L1 (1976).

  44. Agarwal, N. and Farris, R.J.,Polymer Eng. Sci., (1998), in press.

  45. Agarwal, N. and Farris, R.J.,Thermochimica Acta, (1998), in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Farris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, N., Farris, R.J. Thermodynamics of deformation of latex blend coatings and its implications for tailoring their properties. Journal of Coatings Technology 71, 61–72 (1999). https://doi.org/10.1007/BF02698385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698385

Keywords

Navigation