Skip to main content
Log in

Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cawthorne and E.J. Fulton:Nature, 1967, vol. 216, p. 515.

    Article  Google Scholar 

  2. J.L. Straalsund, H.R. Brager, and J.J. Holmes: inRadiation- Induced Voids in Metals, CONF-710601, Atomic Energy Commission, Office of Information Services, government publication, Apr. 1972, pp. 142–55.

  3. J.J. Laidler, J.J. Holmes, and J.W. Bennett: inRadiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennett, eds., TMS-AIME, New York, NY, 1977, pp. 41–52.

    Google Scholar 

  4. S.D. Harkness, B.J. Kestel, and P. Okamoto: inRadiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennett, eds., TMS-AIME, New York, NY, 1977, pp. 334–37.

    Google Scholar 

  5. F.A. Garner, H.R. Brager, and R.J. Puigh:J. Nucl. Mater., 1985, vol. 133–134, pp. 535–39.

    Article  Google Scholar 

  6. J.L. Seran, L. Le Naour, P. Grosjean, N.P. Higon, Y. Carteret, and A. Maillard: inEffects of Radiation on Materials, 12th Int. Symp., F.A. Garner and J.S. Perrin, eds., ASTM STP 870, ASTM, Philadelphia, PA, 1985, pp. 233–47.

    Google Scholar 

  7. R.J. Puigh and F.A. Garner: inRadiation-Induced Changes in Microstructure, 13th Int. Symp. (Part 1), F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM STP 955, ASTM, Philadelphia, PA, 1987, pp. 154–60.

    Google Scholar 

  8. R. Bajaj, R.P. Shogan, C. DeFlitch, R.L. Fish, M.M. Paxton, and M.L. Bleiberg: inEffects of Radiation on Materials, 10th Conf, D. Kramer, H.R. Brager, and J.S. Perrin, eds., ASTM STP 725, ASTM, Philadelphia, PA, 1981, pp. 326–51.

    Google Scholar 

  9. W.J.S. Yang, D.S. Gelles, J.L. Straalsund, and R. Bajaj:J. Nucl. Mater., 1985, vol. 132, pp. 249–65.

    Article  CAS  Google Scholar 

  10. Sandvik HT-9 data sheet S-l, 720-ENG, Sandviken, Sweden, May 1981.

  11. V.K. Sikka: inProc. Top. Conf. on Ferritic Alloys for Use in Nuclear Energy Technologies, TMS-AIME, Warrendale, PA, 1984, pp. 317–27.

    Google Scholar 

  12. A.J. Lovell, A.L. Fox, W.H. Sutherland, and S.L. Hecht: inInt. Conf. on Reliable Fuels for Liquid Metal Reactors, American Nuclear Society, La Grange Park, IL, 1987, pp. 3–25-3–36.

    Google Scholar 

  13. F.E. Tippets, L.N. Salemo, CE. Boardman, W. Kwant, R.E. Murata, and C.R. Snyder:Proc. Am. Power Conf., 1987, vol. 49, pp. 874–83; S. Vaidyanathan and R.E. Murata: inProc. Int. Conf. on Reliable Fuels for Liquid Metal Reactors, American Nuclear Society, La Grange Park, IL, 1987, pp. 1-43–1-60.

    Google Scholar 

  14. D.S. Bost and L.D. Feiten: inInt. Conf. on Reliable Fuels for Liquid Metal Reactors, American Nuclear Society, La Grange Park, IL, 1987, pp. 1–61-1–68.

    Google Scholar 

  15. The Fusion Reactor Materials Program Plan, Section 1, Alloy Development for Irradiation Performance, DOE/ET-0032/1, July 1978.

  16. Alloy Development for Irradiation Performance Quarterly Progress Reports (beginning with the period ending Dec. 31, 1979), DOE/ ER-0045/1-16.

  17. S.N. Rosenwasser, P. Miller, J.A. Dalessandro, J.M. Rawls, W.E. Toffolo, and W. Chen:J. Nucl. Mater., 1979, vol. 85–86, pp. 177–82.

    Article  Google Scholar 

  18. H. Attaya, G.L. Kulcinski, and W.G. Wolfer:J. Nucl. Mater., 1984, vol. 122–123, pp. 96–100.

    Article  Google Scholar 

  19. Starfire, A Commercial Tokamak Fusion Power Plant Study, ANL/ FPP-80-1, Sept. 1980, vol. 1, pp. 10–232.

  20. A Demonstration Tokamak Power Plant Study, ANL/FPP/82-1, Sept. 1982, pp. 2–3.

  21. MARS Mirror Advanced Reactor Study, Final Report, UCRL- 53480, July 1984, vol. 1-B, pp. 12-9–12-24.

  22. Blanket Comparison and Selection Study, Final Report, ANL/ FPP-84-1, Sept. 1984, pp. 7.3–4.

  23. Modeling, Analysis & Experiments for Fusion Nuclear Technology, FNT Progress Report: Modeling and FINESSE, Jan. 1987, p. 1021.

  24. J.L. Straalsund and D.S. Gelles: inProc. Top. Conf. on Ferritic Alloys for Use in Nuclear Energy Technologies, TMS-AIME, Warrendale, PA, 1984, HEDL-SA-2771, May 1983.

    Google Scholar 

  25. D.S. Gelles:J. Nucl. Mater., 1987, vol. 149, pp. 192–99.

    Article  CAS  Google Scholar 

  26. D.S. Gelles and R.L. Meinecke Ermi: inAlloy Development for Irradiation Performance Semiannual Progress Report for the period ending September 30, 1983, DOE/ER-0045/11 (1983), pp. 103–07.

  27. F.A. Garner and D.S. Gelles:Fusion Reactor Materials, DOE/ ER/0313/5, Sept. 1988, PNL-SA-15471, pp. 179–87.

  28. G.R. Odette:Fusion Reactor Materials, DOE/ER-0313/4, Sept. 1987, pp. 106–14.

  29. J.J. Sniegowski and W.G. Wolfer: inProc. Top. Conf. on Ferritic Alloys for Use in Nuclear Energy Technologies, TMS-AIME, Warrendale, PA, 1984, pp. 579–91.

    Google Scholar 

  30. R. Bullough, M.H. Wood, and E.A. Little: inEffects of Radiation on Materials, 10th Conf, D. Kramer, H.R. Brager, and J.S. Perrin, eds., ASTM STP 725, ASTM, Philadelphia, PA, 1981, pp. 593–609.

    Google Scholar 

  31. D.S. Gelles:J. Nucl. Mater., 1982, vol. 108–109, pp. 515–26.

    Article  Google Scholar 

  32. L.L. Horton and L.K. Mansur: inEffects of Radiation on Materials, 12th Int. Symp., F.A. Garner and J.S. Perrin, eds., ASTM STP 870, ASTM, Philadelphia, PA, 1985, pp. 344–62.

    Google Scholar 

  33. W.A. Coghlan and D.S. Gelles:Fusion Reactor Materials, DOE/ ER-0313/2, Mar. 1987, pp. 88–98.

  34. Workshop on Solute Segregation and Phase Stability During Irradiation:J. Nucl. Mater., 1979, vol. 83.

  35. S. Ohnuki, H. Takahashi, and T. Takeyama:J. Nucl. Mater., 1981, vol. 103–104, pp. 1121–26.

    Article  Google Scholar 

  36. S. Ohnuki, H. Takahashi, and T. Takeyama:J. Nucl. Mater., 1984, vol. 122–123, pp. 317–21.

    Article  Google Scholar 

  37. T. Muroga, A. Yamaguchi, and N. Yoshida: inEffects of Radiation on Materials: 14th Int. Symp., ASTM STP 1046, N.H. Packan, R.E. Stoller, and A.S. Kumar, eds., American Society for Testing and Materials, Philadelphia, PA, 1990, in press.

    Google Scholar 

  38. D.S. Gelles: inEffects of Radiation on Materials: 14th Int. Symp., ASTM STP 1046, N.H. Packan, R.E. Stoller, and A.S. Kumar, eds., American Society for Testing and Materials, Philadelphia, PA, 1990, pp. 73–97.

    Google Scholar 

  39. T.A. Lechtenberg: GA Technologies, San Diego, CA, unpublished work.

  40. P. Chen and R.C. Wilcox: inEffects of Radiation on Materials: 14th Int. Symp., ASTM STP 1046, N.H. Packan, R.E. Stoller, and A.S. Kumar, eds., American Society for Testing and Materials, Philadelphia, PA, 1990, in press.

    Google Scholar 

  41. R.D. Griffin, R.A. Dodd, G.L. Kulcinski, and D.S. Gelles:Metall. Trans. A, in press.

  42. D.S. Gelles and L.E. Thomas: inProc. Top. Conf. on Ferritic Alloys for Use in Nuclear Energy Technologies, TMS-AIME, Warrendale, PA, 1984, pp. 559–68.

    Google Scholar 

  43. P.J. Maziasz: inMaterials for Nuclear Reactor Core Applications, British Nuclear Energy Society, London, 1987, pp. 61–71.

    Google Scholar 

  44. P.J. Maziasz, R.L. Klueh, and J.M. Vitek:J. Nucl. Mater., 1986, vol. 141–143, pp. 929–37.

    Article  Google Scholar 

  45. The Use of Small-Scale Specimens for Testing Irradiated Material, W.R. Corwin and G.E. Lucas, eds., ASTM STP 888, ASTM, Philadelphia, PA, 1986.

    Google Scholar 

  46. B.S. Louden, A.S. Kumar, F.A. Garner, M.L. Hamilton, and W.L. Hu:J. Nucl. Mater., 1988, vols. 155–157, pp. 662–67.

    Article  Google Scholar 

  47. F.H. Huang: inThe Use of Small-Scale Specimens for Testing Irradiated Material, W.R. Corwin and G.E. Lucas, eds., ASTM STP 888, ASTM, Philadelphia, PA, 1986, pp. 290–304.

    Google Scholar 

  48. F.H. Huang:J. Test. Eval., 1985, vol. 13, pp. 257–64.

    Article  Google Scholar 

  49. G.C. Bodine and R.E. McDonald: inFerritic Steels for High-Temperature Applications, A.K. Khare, ed., ASM, Metals Park, OH, 1983, pp. 9–20.

    Google Scholar 

  50. K. Hashimoto, M. Yamanaka, Y. Otoguro, T. Zaizen, M. Onayama, and T. Fujita: inProc. Top. Conf. on Ferritic Alloys for Use in Nuclear Energy Technologies, TMS-AIME, Warrendale, PA, 1984, pp. 307–15.

    Google Scholar 

  51. Report of the DOE Panel on Low Activation Materials for Fusion Applications, R.W. Conn, Panel Chairman, UCLA/PPG-728, June 1983.

  52. R.L. Klueh, D.S. Gelles, and T.A. Lechtenberg:J. Nucl. Mater., 1986, vol. 141–143, pp. 1081–87.

    Article  Google Scholar 

  53. D.S. Gelles: in Proc.14th ASTM Int. Symp. on Effects of Radiation on Materials, Andover, MA, June 1988, in press.

  54. J.J. Fischer: U.S. Patent 4,075,010, Feb. 21, 1978.

  55. Frontiers of High Temperature Materials II, J.S. Benjamin and R.C. Benn, eds., International Nickel Company, Huntington, WV, 1985.

    Google Scholar 

  56. R.W. Powell, G.D. Johnson, M.L. Hamilton, and F.A. Garner: inProc. Int. Conf. on Reliable Fuels for Liquid Metal Reactors, American Nuclear Society, La Grange Park, IL, 1987, pp. 4–17-4–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 25–29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelles, D.S. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering. Metall Trans A 21, 1065–1071 (1990). https://doi.org/10.1007/BF02698238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698238

Keywords

Navigation