Skip to main content
Log in

Response of high mountain landscape to topographic variables: Central pyrenees

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

An objective method for inductively modelling the distribution of mountain land units using GIS managed topographic variables is presented. The landscape of a small high mountain catchment in the Spanish Pyrenees, covered with grassland, was classified in ten land units by hierarchical agglomerative clustering, using a sample of 194 random plots, in which classes of vegetation, soils and landforms were defined. Additionally, seven layers of topographic variables (altitude, slope angle, aspect, solar radiation, topographic wetness index, specific catchment area, and regolith thickness) were created from a Digital Elevation Model. The affinity of each land unit to the topographic variables was calculated using Binary Discriminant Analysis (BDA), after dichotomising the latter around their mean values. Then, the distribution of each land unit was predicted by boolean operations combining step by step distributions for the seven topographic variables ordered, for each unit, after the absolute values of the Haberman’s residuals in BDA. The predicted distributions were tested (χ2) against that of the observed sampling plots. From the original ten land units, the distributions of eight of them were successfully predicted (four are related to the slope sequence, two reflect the water accumulation in the soil, and two respond to geomorphic processes) while the remaining two had to be rejected. Part of the catchment (39%) was not assigned to any land unit, probably because more distributed variables accounting for snow distribution are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alcaniz, J.M., Josa, R., Sole, A. and Vallejo, V.R. 1990.Informe relativo a los suelos de la microcuenca de “El Furco” en el valle de Izas. Research Report, Estacion Experimental de Zonas Aridas, CSIC, Almeria.

    Google Scholar 

  • Alvera, B., Barrio, G. del and Diez, J.C. 1991.The Izas Experimental Catchment, central Pyrenees. Research Report, Instituto Pirenaico de Ecologia, CSIC, Jaca.

    Google Scholar 

  • Austin, M.P. 1987. Models for the analysis of species’ response to environmental gradients.Vegetatio 69: 35–45.

    Article  Google Scholar 

  • Austin, M.P., Cunningham, R.B. and Flemming, P.M. 1983. Altitudinal distribution of several Eucalypt species in southern New South Wales.Aust. J. Ecol.. 8: 169–180.

    Article  Google Scholar 

  • Austin, M.P., Cunningham, R.B. and Flemming, P.M. 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures.Vegetatio 55: 11–27.

    Article  Google Scholar 

  • Austin, M.P., Meyers, J.A. and Doherty, M.D. 1994.Predictive models for landscape patterns and processes, Sub-project 2, Modelling of landscape patterns and processes using biological data. Division of Wildlife and Ecology, CSIRO, Canberra.

    Google Scholar 

  • Barrio, G. del 1990. El regimen termico estacional en alta montana.In Geoecologia de las Areas de Montana. pp. 115–143. Edited by J.M. Garcia Ruiz. Geoforma Ediciones, Logrono.

    Google Scholar 

  • Barrio, G. del 1992.Respuesta topografica del paisaje en alta montana. UnPub PhD Thesis, Universidad Autonoma de Madrid, Madrid

    Google Scholar 

  • Barrio, G. del, Alvera, B. and Diez, J.C. 1993. The choice of cell size in Digital Terrain Models: an objective method.In Methods of Hydrological Basin Comparison. pp. 190–196. Edited by M. Robinson. Inst. Hydrol. Rep. No 120, Wallingford.

  • Barrio, G. del and Puigdefabregas, J. 1987. Mass wasting features above the timeberline in the central Pyrenees and their topographic controls.Pirineos 130: 29–51.

    Google Scholar 

  • Belbin, L. and Austin, M.P. 1991. Ecological modelling and GIS applications to conservation evaluation.In GIS for Property and Environmental Management. pp. 4.2.2–4.2.13. Edited by CSIRO, Canberra.

    Google Scholar 

  • Beven, K.J. 1987. Towards the use of catchment geomorphology in flood frequency predictions.Earth Surf. Processes 12: 69–82.

    Article  Google Scholar 

  • Beven, K.J. and Kirkby, M.J. 1979. A physically based variable contributing area model.Hydrolog. Sci. Bull. 24: 43–69.

    Article  Google Scholar 

  • Beven, K.J. and Wood, E.F. 1983. Catchment geomorphology and the dynamics of runoff contributing areas.J. Hydrol. 65: 139–158.

    Article  Google Scholar 

  • Billings, W.D. and Mark, A.F. 1961. Interactions between alpine tundra vegetation and patterned ground in the mountains of southern New Zealand.Ecology 42: 18–31.

    Article  Google Scholar 

  • Borman, F.H. and Likens, G.E. 1969. The watershed-ecosystem concept and studies in nutrient cycles.In The Ecosystem Concept in Natural Resource Management. pp. 49–76. Edited by G.M. VanDyne. Academic Press, New York.

    Google Scholar 

  • Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. 1984.Classification and Regression Trees. Wadsworth Int. Gr., Belmont, California.

    Google Scholar 

  • Burrough, P.A. 1986.Principles of Geographical Information Systems for land resources assessment. Clarendon Press, Oxford.

    Google Scholar 

  • Chocarro, C., Fanlo, R., Fillat, F. and Marin, P. 1990. Historical evolution of natural resource use in the Central Pyrenees of Spain.Mt. Res. Dev. 10: 257–265.

    Article  Google Scholar 

  • Davis, J.C. 1986.Statistics and Data Analysis in Geology, John Wiley and Sons, New York.

    Google Scholar 

  • Diez, J.C. 1991.Estudio y parametrizacion del intercambio de energia entre la atmosfera y el manto nival durante el periodo de fusion: Cuenca Experimental de Izas, Pirineos Centrales. UnPub PhD Thesis, Universidad de Zaragoza, Zaragoza.

    Google Scholar 

  • Eastman, J.R. 1990.IDRISI Technical Reference. Clark University, Graduate School of Geography, Worcester.

    Google Scholar 

  • FAO 1985.FAO-UNESCO soil map of the world, 1:5000, revised legend. FAO, Rome.

    Google Scholar 

  • Forman, R.T.T. and Godron, M. 1981. Patches and structural components for a landscape ecology.BioScience 31: 733–740.

    Article  Google Scholar 

  • Gallart, F., Puigdefabregas, J. and Barrio, G. del 1993. Computer simulation of high mountain terracettes as interaction between vegetation growth and sediment movement.Catena 20: 529–542.

    Article  Google Scholar 

  • Garnier, B.J. and Ohmura, A. 1968. A method of calculating the direct shortwave radiation income of slopes.J. Appl. Meteorol. 7: 796–800.

    Article  Google Scholar 

  • Hill, M.O. 1979.TWINSPAN — A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca.

    Google Scholar 

  • Hill, M.O., Bunce, R.G.H. and Shaw, M.W. 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland.J. Ecol. 63: 597–613.

    Article  Google Scholar 

  • Jackson, D.A., Somers, K.M. and Harvey, H.H. 1989. Similarity coefficients: measures of co-occurrence and association or simply measures of co-occurrence?Am. Nat. 133: 436–453.

    Article  Google Scholar 

  • Levin, S.A. 1992. The problem of pattern and scale in ecology.Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Margalef, R. 1986.Ecologia. Editorial Omega, Barcelona.

    Google Scholar 

  • Margalef, R. and Gutierrez, E. 1983. How to introduce connectance in the frame of an expression for diversity.Am. Nat. 121: 601–607.

    Article  Google Scholar 

  • Margules, C.R., Nicholls, A.O. and Pressey, R.L. 1988. Selecting networks of reserves to maximize biological diversity.Biol. Conserv. 50: 219–238.

    Article  Google Scholar 

  • Martinez Rica, J.P., Borghi, C.E. and Giannoni, S.M. 1991. Research on bioturbation in the spanish mountains.In Soil Erosion Studies in Spain. pp. 165–179. Edited by M. Sala, J.L. Rubio and J.M. Garcia Ruiz. Geoforma Ediciones, Logrono.

    Google Scholar 

  • McCullagh, P. and Nelder, J.A. 1989.Generalized Linear Models, 2 nd ed. Chapman and Hall, London.

    Google Scholar 

  • Montserrat, J. 1992.Evolucion glaciar y postglaciar del clima y la vegetacion en la vertiente sur del Pirineo: estudio palinologico. Instituto Pirenaico de Ecologia, Monografia Num. 6, CSIC, Zaragoza.

    Google Scholar 

  • Moore, D.M., Lees, B.G. and Davey, S.M. 1991. A new method for predicting vegetation distributions using decision tree analysis in a geographic information system.Environ. Manage. 15: 59–71.

    Article  Google Scholar 

  • Moore, I.D., Grayson, R.B. and Ladson, A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological and biological applications.Hydrol. Process 5: 3–30.

    Article  Google Scholar 

  • Moore, I.D., O’Loughlin, E.M. and Burch, G.J. 1988. A contour-based topographic model for hydrological and ecological applications.Earth Surf. Processes 13: 305–320.

    Article  Google Scholar 

  • Moore, I.D., Turner, A.K., Wilson, J.P., Jenson, S.K. and Band, L.E. 1993. GIS and land surface-subsurface process modelling.In Geographic Information Systems and Environmental Modelling. pp. 196–230. Edited by M.F. Goodchild, B.O. Parks and L.T. Steyaert. Oxford University Press, New York.

    Google Scholar 

  • Nicholls, A.O. 1989. How to make biological surveys go further with generalised linear models.Biol. Conserv. 50: 51–75.

    Article  Google Scholar 

  • O’Loughlin, E.M. 1986. Prediction of surface saturation zones in natural cachments by topographic analysis.Water Resour. Res. 22: 794–804.

    Article  Google Scholar 

  • O’Neill, R.V., Turner, S.J., Cullinan, V.I., Coffin, D.P., Cook, T., Conley, W., Brunt, J., Thomas, J.M., Conley, M.R. and Gosz, J. 1991. Multiple landscape scales: an intersite comparison.Landscape Ecol. 5: 137–144.

    Article  Google Scholar 

  • Odum, E.P. 1971.Fundamentals of Ecology. W.B. Saunders Co., Philadelphia.

    Google Scholar 

  • Paltridge, G.W. and Platt, C.M.R. 1976.Radiative processes in meteorology and climatology. Elsevier Scientific Publishing Company, Amsterdam.

    Google Scholar 

  • Podani, J. 1988. SYN-TAX III, user’s manual.Abstracta Botanica 12, Suppl. 1: 1–183.

    Google Scholar 

  • Price, L.W. 1971. Vegetation, microtopography, and depth of active layer on different exposures in subarctic alpine tundra.Ecology 52: 633–647.

    Google Scholar 

  • Puigdefabregas, J. and Alvera, B. 1986. Particulate and dissolved matter in snowmelt runoff from small watersheds.Z. Geomorphol. Suppl. Bd. 58: 69–80.

    Google Scholar 

  • Quinn, P.F., Beven, K., Chevallier, P. and Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using Digital Terrain Models.Hydrol. Process. 5: 59–79.

    Article  Google Scholar 

  • Sneath, P.H.A. and Sokal, R.R. 1973.Numerical taxonomy, W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Sokal, R.R. and Rohlf, J.R. 1981.Biometry. W.H. Freeman and Company, Nueva York.

    Google Scholar 

  • Solntsiev, V.N. 1974.O niekotorykn fundamentalnykh svoistakh gheosistemnoi struktury (About some fundamental properties of geosystems). Akademiya Nauk SSSR, Irkutsk.

    Google Scholar 

  • Steward, M.R. 1985. Landforms and plant assemblages of the low alpine tundra, Okstindan, north Norway.In Okstindan Preliminary Report for 1983. pp. 63–76. Edited by J. Rose and C.A. Whiteman. Dept. of Geography, Birkbeck College, University of London, London.

    Google Scholar 

  • Strahler, A.H. 1978. Binary discriminant analysis: a new method for investigating species-environment relationships.Ecology 59: 108–116.

    Article  Google Scholar 

  • Swanson, F.J., Kratz, T.K., Caine, N. and Woodmansee, R.G. 1988. Landform effects on ecosystem, patterns and processes.BioScience 38: 92–98.

    Article  Google Scholar 

  • Thorn, C.E. 1978. A preliminary assessment of the geomorphic role of pocket gophers in the alpine zone of the Colorado Front Range.Geografiska Annaler 60A: 181–187.

    Article  Google Scholar 

  • Thorn, C.E. 1982. Geopher disturbance: its variability by Braun-Blanquet vegetation units in the Niwot Ridge alpine tundra zonc, Colorado Front Range, USA.Arctic Alpine Res. 14: 45–51.

    Article  Google Scholar 

  • Turner, M.G. 1989. Landscape ecology: the effect of pattern on process.Annu. Rev. Ecol. Syst. 20: 171–197.

    Article  Google Scholar 

  • Vincent, P.J. and Clarke, J.V. 1978. The terracette enigma: a review.Biuletyn Peryglacjalny 25: 65–77.

    Google Scholar 

  • Walker, P.A. and Belbin, L. 1990. The identification of spatial associations and their incorporation in Geographical Information Systems.In Proceedings of the 4th International Symposium on Spatial Data Handling, Zurich, 25/3/1990.

  • Walker, P.A. and Moore, D.M. 1988. SIMPLE — an inductive modelling and mapping tool for spatially-oriented data.Int. J. GIS 2: 347–363.

    Google Scholar 

  • Warren-Wilson, J. 1952. Vegetation patterns associated with soil movement on Jan Mayen Island.J. Ecol. 40: 249–264.

    Article  Google Scholar 

  • Whittaker, R.H. 1975.Communities and ecosystems. MacMillan, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Barrio, G., Alvera, B., Puigdefabregas, J. et al. Response of high mountain landscape to topographic variables: Central pyrenees. Landscape Ecol 12, 95–115 (1997). https://doi.org/10.1007/BF02698210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698210

Keywords

Navigation