Abstract
The possibility of creating shock-wave systems to achieve maximum supersonic flow turning angles is considered. The relation between these systems and both geometrically conditioned optimal systems and the shock-wave structures formed as a result of interaction between gasdynamic discontinuties is investigated.
This is a preview of subscription content, access via your institution.
References
G. I. Petrov,Aeromechanics of High Velocities and Space Research: Selected Works [in Russian], Nauka, Moscow (1992).
R. Hermann,Supersonic Inlet Diffusers and Introduction to Internal Aerodynamics, Minneapolis Honeywell Regulator Co., Minneapolis (1956).
A. V. Omel’chenko and V. N. Uskov, “Optimal shock-wave systems”,Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 112 (1995).
A. V. Omel’chenko and V. N. Uskov, “Optimal shock-wave systems under constraints on the total flow turning angle,”Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 142 (1996).
A. V. Omel’chenko and V. N. Uskov, “Extreme rarefaction-wave shock-wave system in a steady-state gas flow,”Zh. Prikl. Mekh. Tekh. Fiz.,38, No. 2, 40 (1997).
A. L. Adrianov, A. L. Starykh, and V. N. Uskov,Steady-State Gasdynamic Discontinuity Interference [in Russian], Nauka, Novosibirsk (1995).
Additional information
St. Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 148–156, May–June, 1998.
Rights and permissions
About this article
Cite this article
Omel’chenko, A.V., Uskov, V.N. Maximum turning angles of a supersonic flow in shock-wave systems. Fluid Dyn 33, 419–426 (1998). https://doi.org/10.1007/BF02698194
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02698194
Keywords
- Mach Number
- Rarefaction Wave
- Compression Wave
- Turning Angle
- Individual Wave