Skip to main content
Log in

Potential ofVinca rosea extracts in modulating trace element profile

A chemopreventive approach

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Diethylnitrosamine (DEN) was used as cancer-inducing agent in the experimental animals.Vinca rosea extract was supplemented with the drinking water as a chemopreventive agent. After 4 wk of treatment, animals were sacrificed and livers were excised. Nuclei and mitochondria were separated by differential centrifugation. The proton-induced X-ray emission technique has been used as the analytical method. Elemental analysis were performed for whole liver, nuclei, and mitochondria.V. rosea plant parts were also analyzed for elemental contents. Treatment with DEN caused an increase of Ni, Zn, and Cr levels in the whole liver and nuclei. There is an increase in Fe concentration in the liver, although the level decreased in mitochondria. The concentrations of Br and Ca were unchanged in the liver as a whole, but there were substantial increases of Br in nuclei and mitochondria, whereas Ca levels depleted drastically in these two organelles.Vinca extracts were effective in reverting the changes in the elemental concentration in the hepatic tissue as a whole, but were not that effective at subcellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Thurnher, D. Turhani, M. Pelzmann, et al., Betulinic acid: a new cytotoxic compound against malignant head and neck cancer cells,Head Neck 25, 732–740 (2003).

    Article  PubMed  Google Scholar 

  2. R. L. Noble, The discovery of the vinca alkaloids–chemotherapeutic agents against cancer,Biochem. Cell Biol. 68, 1344–1351 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. W. Yalin, O. Ishurd, S. Cuirong, and P. Yuanjiang, Structure analysis and antitumor activity of (1 3)-β-D-glucans (cordyglucans) from the mycelia ofCordyceps sinensis, Planta Med. 71, 381–384 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. A. Tangeras, Lysosomes, but not mitochondria, accumulate iron and porphyrins in porphyria induced by hexachlorobenzene,Biochem. J. 235, 671–675 (1986).

    PubMed  CAS  Google Scholar 

  5. H. W. Kuo, S. E Chen, C. C. Wu, D. R. Chen, and J. H. Lee, Serum and tissue trace elements in patients with breast cancer in Taiwan,Biol. Trace Element Res. 89, 1–11 (2002).

    Article  CAS  Google Scholar 

  6. A. Lupulescu,Cancer Cell Metabolism and Cancer Treatment, Harwood Academic, Amsterdam, pp. 10–12 (2001).

    Google Scholar 

  7. J. A. Buege and S. D. Aust, Microsomal lipid peroxidation,Methods Enzymol. 52, 302–310 (1978).

    PubMed  CAS  Google Scholar 

  8. T. P. M. Akerboom and H. Sies, Assay of glutathione disulfide, and glutathione mixed disulfide in biological samples,Methods Enzymol. 77, 373–382 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. H. Aebi, Catalase in vitro,Methods Enzymol. 105, 121–126 (1984).

    PubMed  CAS  Google Scholar 

  10. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with folin phenol reagent,J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  11. S. A. E. Johansson and J. L. Campbell,PIXE: A Novel Technique for Elemental Analysis, Wiley, New York (1998).

    Google Scholar 

  12. M. Sudarshan, R. K. Dutta, V. Vijayan, and S. N. Chintalapudi, PIXE measurements of drinking water of Salt Lake, Calcutta, India,Nucl. Instrum. Methods B 168, 553–558 (2000).

    Article  CAS  Google Scholar 

  13. K. Doreswami, B. Shrilatha, T. Rajeshkumar and Muralidhara, Nickel-induced oxidative stress in testis of mice: Evidence of DNA damage and genotoxic effects,J. Androl. 25, 996–1003 (2004).

    Google Scholar 

  14. S. Toyokuni, Iron-induced carcinogenesis: the role of redox regulation,Free Radical Biol. Med. 20, 553–566 (1996).

    Article  CAS  Google Scholar 

  15. S. Lynn, E H. Yew, J. W. Hwang, M. J. Tseng, and K. Y. Jan, Glutathione can rescue the inhibitory effects of nickel on DNA ligation and repair synthesis,Carcinogenesis 15, 2811–2816 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. L. A. Poirier, The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: an introduction,J. Nutr. 132, 2336S-2339S (2002).

    PubMed  CAS  Google Scholar 

  17. Y.-W. Lee, C. B. Klein, B. Kargacin, et al., Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenic carcinogenesis,Mol. Cell. Biol. 15, 2547–2557 (1995).

    PubMed  CAS  Google Scholar 

  18. K. S. Kasprzak and R. M. Bare, In vitro polymerization of histones by carcinogenic nickel compounds,Carcinogenesis 10, 621–624 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. M. Kucharzewski, J. Braziewicz, U. Majewska, and S. Gozdz, Selenium, copper and zinc in intestinal cancer tissue and in colon rectum polyps,Biol. Trace Element Res. 92, 1–10 (2003).

    Article  CAS  Google Scholar 

  20. R. G. Uzzo, P. Leavis, W. Hatch, et al., Zinc inhibits nuclear factor-κB activation and sensitizes prostate cancer cells to cytotoxic agents,Clin. Cancer Res. 8, 3597–3583 (2002).

    Google Scholar 

  21. K. Salnikow, M. Gao, V. Voitkun, X. Huang, and M. Costa, Altered oxidative stress responses in nickel-resistant mammalian cells,Cancer Res. 54, 6407–6412 (1994).

    PubMed  CAS  Google Scholar 

  22. H. Cunzhi, J. Jiexian, Z. Xianwen, G. Jingang, Z. Shumin, and D. Lili, Serum and tissue levels of six trace elements and Cu/Zn ratio in patients with cervical cancer and uterine myoma,Biol. Trace Element Res. 94, 113–122 (2003).

    Article  Google Scholar 

  23. J. M. McCord, Iron, free radicals and oxidative injury,Semin. Hematol. 35, 5–12 (1998).

    PubMed  CAS  Google Scholar 

  24. M. G. Simic, Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis,Mutat. Res. 202, 377–386 (1988).

    PubMed  CAS  Google Scholar 

  25. S. D. Flora, Threshold mechanisms and site specificity in chromium(VI) carcinogenesis,Carcinogenesis 21, 533–541 (2000).

    Article  PubMed  Google Scholar 

  26. D. Y. Cupo and K. E. Wetterhahn, Binding of chromium to chromatin and DNA from liver and kidney of rats treated with sodium dichromate and chromium(III) chloride in vivo,Cancer Res. 45, 1146–1151 (1985).

    PubMed  CAS  Google Scholar 

  27. S. K Tandon, J. R. Behari, and D. N. Kachru, Distribution of chromium in poisoned rats,Toxicology 13(1), 29–34 (1979).

    PubMed  CAS  Google Scholar 

  28. M. Pas, R. Milacic, K. Draslar, N. Pollak, and P. Raspor, Uptake of chromium(III) and chromium(VI) compounds in the yeast cell structure,Biometals 17(1), 25–33 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. R. L. Messer and L. C. Lucas, Localization of metallic ions with gingival fibroblast subcellular fractions,J. Biomed. Mater. Res,59(3), 466–472 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. M. A. Fernandes, M. S. Santos, M. C. Alpoim, V. M. Madeira, and J. A. Vicente, Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study,J. Biochem. Mol. Toxicol. 16(2), 53–63 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. D. D. Hepburn and J. B. Vincent, Tissue and subcellular distribution of chromium picolinate with time after entering the bloodstream,J. Inorg. Biochem,94(1–2), 86–93 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. M. A. Sipowicz, L. M. Anderson, W. E. Utermahlen, Jr., H. J. Issaq, and K. S. Kasprzak, Uptake and tissue distribution of chromium(III) in mice after a single intraperitoneal or subcutaneous administration,Toxicol. Lett. 93(1), 9–14 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. W. J. Marshal and S. K. Bangert,Clinical Biochemistry, 2nd ed., Churchill Livingstone, New York (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanta, B., Sudarshan, M., Boruah, M. et al. Potential ofVinca rosea extracts in modulating trace element profile. Biol Trace Elem Res 117, 139–151 (2007). https://doi.org/10.1007/BF02698090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698090

Index Entries

Navigation