Skip to main content
Log in

Ytterbium and trace element distribution in brain and organic tissues of offspring rats after prenatal and postnatal exposure to ytterbium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lanthanides, because of their diversified physical and chemical effects, have been widely used in a number of fields. As a result, more and more lanthanides are entering the environment and eventually accumulating in the human body. Previous studies indicate that the impact of lanthanides on brain function cannot be neglected. Although neurological studies of trace elements are of paramount importance, up to now, little data are provided regarding the status of micronutritional elements in rats after prenatal and long-term exposure to lanthanide. The aim of this study is to determine the ytterbium (Yb) and trace elements distribution in brain and organic tissues of offspring rats after prenatal and long-term exposure to Yb. Wistar rats were exposed to Yb through oral administration at 0,0.1, 2, and 40 mg Yb/kg concentrations from gestation day 0 through 5 mo of age. Concentrations of Yb and other elements (Mg, Ca, Fe, Cu, Mn, and Zn) in the serum, liver, femur, and brain regions (cerebral cortex, hippocampus, cerebellum, and the rest) of offspring rats at the age of 0 d, 25 d, and 5 mo were analyzed by inductively coupled plasma-mass spectrometry. The accumulation of Yb in the brain, liver, and femur is observed; moreover, the levels of Fe, Cu, Mn, Zn, Ca, and Mg in the brain and organic tissues of offspring rats are also altered after Yb exposure. This disturbance of the homeostasis of trace elements might induce adverse effects on normal physiological functions of the brain and other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wang,Trace Elements in Life Science, China Metrology Publishing House, Beijing, pp. 16–18 (1991) (in Chinese).

    Google Scholar 

  2. B. S. Guo, W. M. Zhu, B. K. Xiong, Y. J. Ji, Z. Liu, and Z. M. Wu,Rare Earths in Agriculture, China Agricultural Science and Technology Press, Beijing, p. 11 (1990) (in Chinese).

    Google Scholar 

  3. N. A. Danilov, Y. S. Krylov, G. V. Korpusov, and G. V. Kostikova, Scintillators based on ytterbium chloride adducts with neutral organophosphorus extractants for detecting solar neutrino for low-energy neutrino spectroscopy experiment,Radiochemistry 45, 128–133 (2003).

    Article  Google Scholar 

  4. S. K. Sarkar, R. E. Rycyna, R. E. Lenkinski, H. A. Solleveld, and L. B. Kinter, Yb-DTPA, a novel contrast agent in magnetic resonance imaging: application to rat kidney,Magn. Reson. Med. 17, 328–335 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. W. E Zhu, S. Q. Xu, P. P. Shao, et al., Investigation on intake allowance of rare earth: a study on bio-effect of rare earth in South Jiangxi,China Environ. Sci. 17(1), 63–66 (1997) (in Chinese).

    CAS  Google Scholar 

  6. J. H. Feng, X. J. Li, E K. Pei, X. Chen, S. L. Li, and Y. X. Nie,1H NMR analysis for metabolites in serum and urine from rats administrated chronically with La(NO3)3,Anal. Biochem. 301, 1–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. H. F. Wu, X. Y. Zhang, X. J. Li, Z. F. Li, Y. J. Wu, and F. K. Pei, Studies on the acute biochemical effects of La(NO3)3 using1H NMR spectroscopy of urine combined with pattern recognition,J. Inorg. Biochem. 99, 644–650 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. W. F. Zhu, S. Q. Xu, H. Zhang, et al., Investigation of children intelligence quotient in REE mining area-I. Bio-effect study of REE mining area in South Jiangxi,Chin. Sci. Bull. 41(10), 914–916 (1996) (in Chinese).

    Google Scholar 

  9. Z. Y. Zhang, Y. Q. Wang, F. L. Li, H. Q. Xiao, and C. F. Chai. Distribution characteristics of rare earth elements in plants from a rare earth ore area,J. Radioanal. Nucl. Chem. 252, 461–465 (2002).

    Article  CAS  Google Scholar 

  10. W. F. Zhu, S. Q. Xu, P. P. Shao, et al., Bioelectrical activity of the central nervous system among populations in a rare earth element area,Biol. Trace Element Res. 57(1), 71–77 (1997).

    CAS  Google Scholar 

  11. A. Basu, K. Chakrabarty, and G.. C. Chatterjee, The effects of lanthanum chloride administration in newborn chicks on glutamate uptake and release by brain synaptosomes,Toxicol. Lett. 20, 303–308 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. L. X. Feng, H. Q. Xiao, X. He, et al., Long-term effects of lanthanum intake on the neurobehavioral development of the rat,Neurotoxicol. Teratol. 28, 119–124 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. W. Y. Feng, M. Wang, B. Li, et al., Mercury and trace element distribution in organic tissues andregional brain of fetal rat after in utero and weaning exposureto low dose of inorganic mercury,Toxicol. Lett. 152, 223–234 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. M. C. Paul, C. H. Parsons, M. B. Calford, and E. I. von Nagy-Felsobuki, Multi-elemental analysis of brain tissues using inductively coupled plasma mass spectrometry: healthy Wistar rats,Spectrochim. Acta B 59, 1485–1490 (2004).

    Article  Google Scholar 

  15. Z. Y. Dong, D. Chen, Y. Liu, A. J. Chen, J. M. Liu, and Y. X. Nie, Effect of mixed rare earth changle on calcium content and its deposition in the liver of pregnant and fetal rats,J. Jilin Univ. (Med.). 29, 13–15 (2003) (in Chinese).

    Google Scholar 

  16. Z. M. Lei, X. T. Wei, and B. Xue, The effect of nitrate lanthanides exposure on the immune function of infant mice,Chin. J. Public Health 16, 91–94 (2000) (in Chinese).

    Google Scholar 

  17. L. Zhou, H. Chen. K. X. Huang, S. L. Li, and Y. X. Nie, Barrier efect of placenta membrane of pregnancy rat on mixed rare earth Changle,J. Chin. Rare Earth Soc. 22, 295–298 (2004) (in Chinese).

    Google Scholar 

  18. C. H. Evans,Biochemistry of the Lanthanides, Plenum, New York, pp. 25–31 (1990).

    Google Scholar 

  19. S. Hirano and K. T. Suzuki, Exposure, metabolism and toxicity of rare earths and related compounds,Environ. Health Perspect. 104, 85–95 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. G. M. Kanapilly,In vitro precipitation behavior of trivalent lanthanides,Health Phys. 39, 343–346 (1980).

    PubMed  CAS  Google Scholar 

  21. S. Hirano, N. Kodama, K. Shibata, and K. T. Suzuki, Metabolism and toxicity of intravenously injected yttrium chloride in rats,Toxicol. Appl. Pharmacol. 121, 224–232 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. Y. Nakamura, Y. Tsumura, Y. Tonogai, T. Shibata, and Y. Ito, Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats,Fundam. Appl. Toxicol. 37, 106–116 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. C. R. Richmond and J. E. London, Long-termin vivo retention of cerium-144 by beagles,Nature 211, 1179 (1966).

    Article  PubMed  CAS  Google Scholar 

  24. P. B. Dean, P. Niemi, L. Kivisaari, and M. Kormano, Comparative pharmacokinetics of gadolinium DTPA and gadolinium chloride,Invest. Radiol. 1, S258-S260 (1988).

    Google Scholar 

  25. H. Q. Xiao, F. L. Li, Z. Y. Zhang, et al., Distribution of ytterbium-169 in rat brain after intravenous injection,Toxicol. Lett. 155, 247–252 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. J. Cumings,Trace Elements in the Brain in Health and in Neurological Disease, The Athlone Press, University of London, London (1965).

    Google Scholar 

  27. M. Kozma and A. Ferke, Trace element localization and changes in zinc and copper concentrations during post-natal development of the rat central nervous system,Acta Histochem. 65, 219–227 (1970).

    Google Scholar 

  28. F. Rath, R. Grahl, and D. Felicetti, Histochemical behaviour of zinc activated tartrate resistant phosphatase in early stages of experimental tumours in the rat trigeminal nerve,Exp. Pathol. 18, 25–30 (1980).

    CAS  Google Scholar 

  29. T. Usdin, I. Creese, and S. Snyder, Regulation by cations of tritium labeled spiroperidol binding associated with dopamine receptors of rat brain,J. Neurochem. 34, 669–676 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. D. Atwood and B. Yearwood, The future of aluminium chemistry,J. Organomet. Chem. 600, 186–197 (2000).

    Article  CAS  Google Scholar 

  31. D. A. Przywara, S. V. Bhave, A. Bhave, et al., Activation of K+ channels by lanthanum contributes to the block of transmitter release in chick and rat sympathetic neurons,J. Membr. Biol. 125, 155–162 (1992).

    PubMed  CAS  Google Scholar 

  32. P. D. Saltman and L. G.. Strause, The role of trace minerals in osteoporosis,J. Am. Coll. Nutr. 12(4), 384–389 (1993).

    PubMed  CAS  Google Scholar 

  33. B. Ytrehus, H. Skagemo, G., Stuve, T. Sivertsen, K. Handeland, and T. Vikoren, Osteoporosis, bone mineralization, and status of selected trace elements in two populations of moose calves in Norway,J. Wildl. Dis. 35(2), 204–211 (1999).

    PubMed  CAS  Google Scholar 

  34. S. Takahashi, I. Takahashi, H. Sato, Y. Kubota, S. Yoshida, and Y. Muramatsu, Age-related changes in the concentrations of major and trace elements in the brain of rats and mice,Biol. Trace Element Res. 80, 145–158 (2001).

    Article  CAS  Google Scholar 

  35. A. F. Castoldi, T. Coccini, S. Ceccatelli, and L. Manzo, Neurotoxicity and molecular effects of methylmercury,Brain Res. Bull. 55, 197–203 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. S. C. Segerstrom and G. E. Miller, Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry,Psychol. Bull. 130, 601–630 (2004).

    Article  PubMed  Google Scholar 

  37. Y. L. Huang, J. Y. Sheu, and T. H. Lin, Association between oxidative stress and changes of trace elements in patients with breast cancer,Clin Biochem. 32, 131–136 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. V. N. Izgut-uysal, N. Derin, and A. Agac, Effect of cold-restraint stress on the distribution of trace elements in rat tissues,Biol. Trace Element Res. 78, 149–155 (2000).

    Article  CAS  Google Scholar 

  39. J. T. Parsons, A. S. David, J. D. Robert, and B. C. Severn, Neuronal-specific endoplasmic reticulum Mg2+/Ca2+-ATPase Ca{2+} sequestration in mixed primary hippocampal culture homogenates,Anal. Biochem. 330, 130–139 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. C. J. Frederickson and G.. Danscher,Nutritional Modification of Brain Function, Academic, New York, pp. 289–306 (1988).

    Google Scholar 

  41. L. B. John, Iron-deficiency anemia: examining the nature and magnitude of the public health problem,J. Nutr. 131, 568s-580s (2001).

    Google Scholar 

  42. L. X. Feng, H. Q. Xiao, X. He, et al., Neurotoxicological consequence of long-term exposure to lanthanum,Toxicol. Lett. 165, 112–120 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., He, X., Xiao, H. et al. Ytterbium and trace element distribution in brain and organic tissues of offspring rats after prenatal and postnatal exposure to ytterbium. Biol Trace Elem Res 117, 89–104 (2007). https://doi.org/10.1007/BF02698086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698086

Index Entries

Navigation