Skip to main content
Log in

Potential involvement of serine/threonine protein phosphatases in apoptosis of HepG2 cells during selenite treatment

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium, an essential biological trace element present in both prokaryotic and eukaryotic cells, exerts its regulatory effect in a variety of cellular events, including cell growth, survival, and death. Selenium compunds have been shown in different cell lines to inhibit apoptosis by several mechanisms. Serine/threonine phosphatases (STPs) are potentially important in selenite-induced apoptosis because of their role in regulation of diverse set of cellular processes. In this study, the regulatory role of STPs in selenite-induced apoptosis has been implied by the use of two specific inhibitors: ocadaic acid and calyculin A. Our results show a decrease in cell density in HepG2 cells under selenite treatment. Resulting specific enzyme activities showed a concentration-dependent increase in all three phosphatase activities after 24 h in cells treated with 5 μM selenite and these activities decreased at 48 and 72 h. However, in cells treated with 10μM selenite, PP2A and PP2B decreased at 48 h, whereas PP2C activity did not change at this dose. In cells treated with 25μM, there was not a significant change in PP2C activity. These data suggest that the most specific response to selenite treatment was in PP2A and PP2B activities in a dose-dependent manner. Our results with OA and Cal-A further support the view that PP1 and PP2A might act as negative regulators of growth. With these data, we have first demonstrated the role of serine/threonine protein phosphatases in the signaling pathway of selenite-induced apoptosis and resulting cytotoxicity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Medina et al., Selenium and mouse mammary tumorigenesis: an investigation of possible mechanisms,Cancer Res. 43(5 Suppl.), 2460–2464 (1983).

    CAS  Google Scholar 

  2. D. Medina and C. J. Oborn, Selenium inhibition of DNA synthesis in mouse mammary epithelial cell line YN-4,Cancer Res. 44, 4361–4365 (1984).

    PubMed  CAS  Google Scholar 

  3. R. J. Shamberger, The genotoxicity of selenium,Mutat. Res. 154, 29–48 (1985).

    PubMed  CAS  Google Scholar 

  4. M. Jacobs and C. Frost, Toxicological effects of sodium selenite in Sprague-Dawley rats,J Toxicol. Environ. Health 8, 575–585 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. R. Gopalakrishna et al., Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion,Arch. Biochem. Biophys. 348, 37–48 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. M. L. Handel et al., Inhibition of AP-1 binding and transcription by gold and selenium involving conserved cysteine residues in Jun and Fos,Proc. Natl. Acad. Sci. USA 92, 4497–4501 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. I. Y. Kim and T. C. Stadtman, Inhibition of NF-kappaB DNA binding and nitric oxide induction in human T cells and lung adenocarcinoma cells by selenite treatment,Proc. Natl. Acad. Sci. USA 94, 12,904–12,907 (1997).

    CAS  Google Scholar 

  8. H. S. Park, E. Park, M. S. Kim, et al., Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism,J. Biol. Chem. 275, 2527–2531 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. G. Spyrou et al., AP-1 DNA-binding activity is inhibited by selenite and selenodiglutathione,FEBS Lett. 368, 59–63 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. S. R. Stapleton et al., Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase,Biochim. Biophys. Acta 1355, 259–269 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. T. C. Stadtman, Selenocysteine,Annu. Rev. Biochem. 65, 83–100 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. J. Lu et al., Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells,Biochem. Pharmacol. 47(9), 1531–1535 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. J. Lanfear et al., The selenium metabolite selenodiglutathione induces p53 and apoptosis: relevance to the chemopreventive effects of selenium?Carcinogenesis 15(7), 1387–1392 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. Z. Zhu, M. Kimura, Y. Itokawa, et al., Apoptosis induced by selenium in human glioma cell lines,Biol. Trace Element Res. 54(2), 123–134 (1996).

    CAS  Google Scholar 

  15. R. Sinha and D. Medina, Inhibition of cdk2 kinase activity by methylselenocysteine in synchronized mouse mammary epithelial tumor cells,Carcinogenesis 18(8), 1541–1547 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. C. Jiang et al., Selenium-induced inhibition of angiogenesis in mammary cancer at chemopreventive levels of intake,Mol. Carcinog. 26(4), 213–225 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. R. Sinha, S. C. Kiley, J. X. Lu, et al., Effects of methylselenocysteine on PKC activity, cdk2 phosphorylation and gadd gene expression in synchronized mouse mammary epithelial tumor cells,Cancer Lett. 146(2), 135–145 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. H. S. Park, S. H. Huh, Y. Kim, et al., Selenite negatively regulates caspase-3 through a redox mechanism,J. Biol. Chem. 275(12), 8487–8491 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. M. Chigbrow, M. Nelson, et al., Inhibition of mitotic cyclin B and cdc2 kinase activity by selenomethionine in synchronized colon cancer cells,Anticancer Drugs 12(1), 43–50 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. C. Jiang et al., Caspases as key executors of methyl selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells,Cancer Res. 61(7), 3062–3070 (2001).

    PubMed  CAS  Google Scholar 

  21. C. Jiang et al., Methyl selenium-induced vascular endothelial apoptosis is executed by caspases and principally mediated by p38 MAPK pathway,Nutr. Cancer 49(2), 174–183 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. K. Yamaguchi, G. Uzzo, J. Pimkina, et al., Methylseleninic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis,Oncogene in press (2005).

  23. M. B. Yin, Z. R. Li, S. Cao, et al., Enhanced 7-ethyl-10-hydroxycamptothecin (SN-38) lethality by methylselenocysteine is associated with Chk2 phosphorylation at threonine-68 and down-regulation of Cdc6 expression,Mol. Pharmacol. 66(1), 153–160 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. G. E Combs, Jr., Chemopreventive agents: selenium,Pharmacol. Ther. 79, 179–192 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. H. A. Celik et al., Biochemical and morphological characteristics of selenite-induced apoptosis in human hepatoma Hep G2 cells,Biol. Trace Element Res. 99(1–3), 27–40 (2004).

    Article  CAS  Google Scholar 

  26. K. Tachibana, P. J. Scheuer, Y. Tsukitani, et al., Okadaic acid, a cytotoxic polyether from two marine sponges of the genusHalichondria, J. Am. Chem. Soc. 103(9), 2469–2471 (1981).

    Article  CAS  Google Scholar 

  27. A. Takai, C. Bialojan, M. Troschka, and J. C. Ruegg, Smooth muscle myosin phosphatase inhibition and force enhancement by black sponge toxin,FEBS Lett. 217(1), 81–84 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. R. T. Boudreau, R. Garduno, and T. J. Lin, Protein phosphatase 2A and protein kinase C alpha are physically associated and are involved inPseudomonas aeruginosa-induced interleukin 6 production by mast cells,J. Biol. Chem. 277(7), 5322–5329 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Kato, N. Fusetani, S. Matsunaga, and K. Hashimoto, Calyculins, potent antitumour metabolites from the marine spongeDiscodermia calyx: biological activities,Drugs Exp. Clin. Res. 14(12), 723–728 (1988).

    PubMed  CAS  Google Scholar 

  30. H. Ishihara, B. L. Martin, D. L. Brautigan, et al., Calyculin A and okadaic acid: inhibitors of protein phosphatase activity,Biochem. Biophys. Res. Commun. 159(3), 871–877 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. P. Cohen, C. E. Holmes, and Y. Tsukitani, Okadaic acid: a new probe for the study of cellular regulation,Trends Biochem. Sci. 15(3), 98–102 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. J. M. Sargent, The use of the MTT assay to study drug resistance in fresh tumour samples,Recent Results Cancer Res. 161, 13–25 (2003).

    PubMed  CAS  Google Scholar 

  33. B. G. Neil and N. K. Tonks, Protein tyrosine phosphatates in signal transduction,Curr. Opin. Cell Biol. 9, 193–204 (1997).

    Article  Google Scholar 

  34. X. Lu et al., PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints,Genes Dev. 19(10), 1162–1174 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. S. St Clair, L. Giono, S. Varmeh Ziaie, et al., DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter,Mol. Cell 16(5), 725–736 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himet Hakan Aydin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celik, H.A., Kircelli, F., Saydam, G. et al. Potential involvement of serine/threonine protein phosphatases in apoptosis of HepG2 cells during selenite treatment. Biol Trace Elem Res 117, 65–75 (2007). https://doi.org/10.1007/BF02698084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698084

Index Entries

Navigation