Skip to main content
Log in

Zinc ions efflux from lymphocytes in vitro in the presence of a calcium and magnesium ionic environment and its changes following administration of verapamil

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The total and ouabain-dependent rate constants of efflux of zinc (Zn) ions from lymphocytes isolated from healthy subjects were measured in vitro in an environment containing calcium (Ca) and magnesium (Mg) ions. Both the total (ERCt-Zn) and ouabain-dependent (ERCos-Zn) rate constants were higher in the presence of Mg2+, with the the oubain-dependent efflux significantly different 0.29±0.07 vs 0.13±0.02 with and without Mg2+, respectively (p<0.001). After the addition of verapamil, an increase of ERCE-Zn was observed in both ionic environments and was higher and statistically significant in the presence of Mg2+: 1.94±0.64 vs 2.97±1.16 (p<0.025). These results suggest that verapamil has an enhancing effect on Zn efflux from isolated lymphocytes, suggesting that calcium channel blockers might result in better Zn homeostatic regulation in diseases of the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. B. Simons, Intracellular free Zn and Zn buffering in human red blood cells,J. Membr. Biol. 123, 63–71 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. T. J. B. Simson, Calcium-dependent Zn efflux in human red blood cells,J. Membr. Biol. 123, 73–81 (1991).

    Article  Google Scholar 

  3. D. J. Bobilya, M. Briske-Anderson, and P. G. Reeves, Zn transport into endothelial cell is a facilitated process,J. Cell. Physiol. 151, 1–7 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. R. D. Raffaniello, S.-Y. Lee, S. Teichberg, and R. A. Wapnir, Distinct mechanisms of zinc uptake at the apical and basolateral membranes of caco-2 cells,J. Cell. Physiol. 152, 356–361 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. E Tacnet, E Lauthier, and P. Ripoche, Mechanisms of zincy transport into pig small intestine brush-border membrane vesicles,J. Physiol. 465, 57–72 (1993).

    PubMed  CAS  Google Scholar 

  6. S. Ripa and R. Ripa, Zinc cellular traffic: physiopathological considerations,Minerva Med. 86, 37–43 (1995).

    PubMed  CAS  Google Scholar 

  7. J. G. Henrotte, M. Santarromana, G. Franck, P. Guicheney, R. Boulu, and R. Bourdon, High cardiac zinc level in spontaneously hypertensive rats,J. Hypertens. 10, 553–559 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. A. Boyum, Isolation of mononuclear cells and granulocytes from blood. II. Isolation of mononuclear cells by centrifugation and of granulocytes by combining centrifugation and sendimentation of 1 g,Scand. J. Clin. Lab. Invest. 21(Suppl. 97), 77–85 (1968).

    CAS  Google Scholar 

  9. A. Noworolska, Antygeny onkopłodowe w komórkach szeregu mielocytarnego, Praca doktorska. AM Wrocław (1984).

    Google Scholar 

  10. A. M. Heagerty, R. F. Bing, M. Miluer, H. Thuston, and J. W. Shales, Leucocyte membrane sodium transport in normotensive populations; dissociation of abnormalities of sodium efflux from raised blood pressure,Lancet 2, 894–905 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. J. Durlach,Magnesium in Clinical Practice, PZWL, Warsaw, pp. 24–25 (1991).

    Google Scholar 

  12. M. P. Blaustein, J. Zhang, L. Chen, and B. P. Hamilton, How does salt retention blood pressure?Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R514-R523 (2006).

    PubMed  CAS  Google Scholar 

  13. P. Manunta, M. Ferrandi, E. Messaggio, and P. Ferrari, A new antihypertensive agent that antagonizes the prohypertensive effect of endogenous ouabain and adducin,Cardiovasc. Hematol. Agents Med. Chem. 4, 61–66 (2006).

    PubMed  CAS  Google Scholar 

  14. W. Schoner and G. Scheiner-Bobis, Endogenous cardiac glycosides: hormones using the sodium pump as signal transducer,Semin. Nephrol. 25, 343–351 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. W. Schoner, N. Bauer, J. Muller-Ehmsen, et al., Ouabain as a mammalian hormone,Ann. NY Acad. Sci. 986, 678–684 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. L. V. Rossoni, L. Dos Santos, L. A. Barker, and D. V. Vassallo, Ouabaine changes arterial blood pressure and vascular reactivity to phenylephrine in L-NAME-induced hypertension,J. Cardiovasc. Pharmacol. 41, 105–116 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. H. Dahlheim, C.L. White, and J. Rothemund, Effect of zinc depletion on angiotensin I-converting enzyme in arterial walls and plasma of the rat,Miner. Electrolyte Metab,15, 125–131 (1989).

    PubMed  CAS  Google Scholar 

  18. S. Tubek, Selected zinc metabolism parameters in relation to insulin and renin - angiotensin - aldosterone system and blood pressure in healthy subjects: sex differences,Biol. Trace Element Res. 114, 65–72 (2006).

    Article  CAS  Google Scholar 

  19. B. S. Huang, M. Kudlac, R. Kumarathasan, and F. H. Leenen, Digoxin prevents ouabain and high salt intake-induced hypertension in rats with sinoaortic denervation,Hypertension 34, 733–738 (1999).

    PubMed  CAS  Google Scholar 

  20. F. Atlihan, T. Soylemezoglu, A. Gokce, G. Guvendik, and O. Satici, Zinc and copper in congestive heart failure,Turk. J. Pediatr. 32, 33–38 (1990) (abstract).

    PubMed  CAS  Google Scholar 

  21. C. Pieri, R. Recchioni, F. Moroni, et al., Ligand and voltage gated sodium channels may regulate electrogenic pump activity in human, mouse, and rat lymphocytes,Biochem. Biophys. Res. Commun. 160, 999–1002 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. J. Cortijo, J. V. Esplugues, and B. Sarria, Zinc as a calcium antagonist; a pharmacological approach in strips of rat aorta,IRCS Med. Sci. Cancer 13, 292–293 (1985).

    CAS  Google Scholar 

  23. J. T. Rogers and C. M. Wood, Characterization of branchial lead-calcium interaction in the freshwater rainbow trout,Oncorhynchus mykiss, J. Exp. Biol. 207, 813–825 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. S. Tubek, Effect of aldosterone receptor blockade by spironolactone on zinc efflux rate constants from lymphocytes of patients with arterial hypertension,Post. Med. Klin. Dośw 3, 27–33 (1994).

    Google Scholar 

  25. C. Dacquet, G. Loirand, C. Mironneau, J. Mironneau, and R Pacaud, Spironolactone inhibition of contraction and calcium channels in rat portal vein,Br. J. Pharmacol. 92, 535–544 (1987).

    PubMed  CAS  Google Scholar 

  26. J. Mironneau, I. Sayet, L. Rakotoarisoa, C. Dacquet, and C. Mironneau, Interactions of spironolactone with (+)-[3H]-isradipine and (-)-[3H]-desmethoxyverapamil binding sites in vascular smooth muscle,Br. J. Pharmacol. 101, 6–7 (1990).

    PubMed  CAS  Google Scholar 

  27. H. J. Kramer, K. Glanzer, and M. Sorger, The role of endogenous inhibition of Na-K-ATPase in human hypertension: sodium pump activity as a determinant of peripheral vascular resistance,Clin. Exp. Hypertens. A 7, 769–782 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. J. G. Henrotte, M. Santarromana, G. Franck, and R. Bourdon, Blood and tissue zinc levels in spontaneously hypertensive rats,J. Am. Coll. Nutr. 9, 340–344 (1990).

    PubMed  CAS  Google Scholar 

  29. E. I. Astashkin, M. G. Glezer, A. B. Khodorova, G. G. Arabidze, L. L. Orlov, and O. B. Poliakova, Calcium 2+ response of lymphocytes to standard test-substances in patients with ischemic heart disease and heart failure,Kardiologiia 41, 67–69 (2001).

    PubMed  Google Scholar 

  30. B. Hennig, Y. Wang, S. Ramasamy, and C. J. McClain, Zinc deficiency alters barrier function of cultured porcine endothelial cells,J. Nutr. 122, 1242–1247 (1992).

    PubMed  CAS  Google Scholar 

  31. B. Hennig, Y. Wang, S. Ramasamy, and C. J. McClain, Zinc protects against tumor necrosis factor-induced disruption of porcine endothelial cell monolayer inegrity,J. Nutr. 123, 1003–1009 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Tubek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tubek, S. Zinc ions efflux from lymphocytes in vitro in the presence of a calcium and magnesium ionic environment and its changes following administration of verapamil. Biol Trace Elem Res 117, 15–21 (2007). https://doi.org/10.1007/BF02698080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698080

Index Entries

Navigation