Skip to main content
Log in

Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We have shown that aluminum (Al) induces cholestasis associated with multiple alterations in hepatocellular transporters involved in bile secretory function, like Mrp2. This work aims to investigate whether these harmful effects are mediated by the oxidative stress caused by the metal. For this purpose, the capability of the antioxidant agent, vitamin E, to counteract these alterations was studied in male Wistar rats. Aluminum hydroxide (or saline in controls) was administered ip (27 mg/kg body weight, three times a week, for 90 d). Vitamin E (600 mg/kg body weight) was coadministered, sc. Al increased lipid peroxidation (+50%) and decreased hepatic glutation levels (-43%) and the activity of glutation peroxidase (-50%) and catalase (-88%). Vitamin E counteracted these effects total or partially. Both plasma and hepatic Al levels reached at the end of the treatment were significantly reduced by vitamin E (-40% and -44%, respectively;p< 0.05). Al increased 4 times the hepatic apoptotic index, and this effect was fully counteracted by vitamin E. Bile flow was decreased in Al-treated rats (-37%) and restored to normality by vitamin E. The antioxidant normalized the hepatic handling of the Mrp2 substrates, rose bengal, and dinitrophenyl-S-glutathione, which was causally associated with restoration of Mrp2 expression. Our data indicate that oxidative stress has a crucial role in cholestasis, apoptotic/necrotic hepatocellular damage, and the impairment in liver transport function induced by Al and that vitamin E counteracts these harmful effects not only by preventing free-radical formation but also by favoring Al disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Yokel and P. McNamara, Aluminum toxicokinetics: an update,Pharmacol. Toxicol. 88, 159–167 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. J. B. Cannata Andía, A dynamic bone and chronic renal failure: an overview,Am. J. Med. Sci. 320, 81–84 (2000).

    Article  PubMed  Google Scholar 

  3. G. L. Klein, Aluminum and hepatobiliary complications of total parenteral nutrition,Gastroenterology 10, 1583–1584 (1993).

    Google Scholar 

  4. G. L. Klein, M. B. Heyman, T. C. Lee, et al., Aluminum-associated hepatobiliary dysfunction in rats: relationships to dosage and duration of exposure,Pediatr. Res. 23, 275–278 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. M. A. González, M. G. Roma, C. A. Bernal, M. L. Alvarez, and M. C. Carrillo, Biliary secretory function in rats chronically intoxicated with aluminum,Toxicol. Sci. 79, 189–195 (2004).

    Article  PubMed  Google Scholar 

  6. C. D. Klaassen, Xenobiotic transporters: another protective mechanism for chemicals,Int. J. Toxicol. 21, 7–12 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,Anal. Biochem. 95, 351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  8. G. L. Ellman, Tissue sulfhydryl groups,Arch. Biochem. Biophys. 82, 70–73 (1959).

    Article  PubMed  CAS  Google Scholar 

  9. R. E Beers and I. W. Sizer, A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,J. Biol. Chem. 195, 133–140 (1952).

    PubMed  CAS  Google Scholar 

  10. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione-peroxidase,J. Lab. Clin. Med. 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  11. O. H. Lowry, N. J. Rosobrough, A. L. Farr, and R. J. Randall, Protein measurements with the folin phenol reagent.Biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  12. C. D. Klaassen, Pharmacokinetics of rose bengal in the rat, rabbit, dog and guinea pig,Toxicol. Appl. Pharmacol. 38, 85–100 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. T. G. Richards, V. R. Tindell, and A. Young, A modification of the bromsulphthalein liver function test to predict the dye content of the liver and bile,Clin. Sci. 18, 499–511 (1959).

    Google Scholar 

  14. E. E. Frezza, G. E. Gerunda, A. Plebani, et al., Effect of ursodeoxycholic acid administration on bile duct proliferation and cholestasis in bile duct ligated rat,Dig. Di.[???] Sci. 38, 1291–1296 (1993).

    Article  CAS  Google Scholar 

  15. E. R. Weibel,Stereological Methods. Vol. I: Practical Methods for Biological Morphometry, Academic, London (1979).

    Google Scholar 

  16. T. Caballero, A. Pérez-Milena, M. Masseroli, et al., Liver fibrosis assessment with semi-quantitative indexes and image analysis quantification in sustained-responder and non-responder interferon-treated patients with chronic hepatitis C,J. Hepatol. 34, 740–747 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. I. Sakaida, A. Nagatomi, K. Hironaka, K. Uchida, and K. Okita, Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C alter interferon therapy,Am. J. Gastroenterol. 94, 489–496 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. R. J. Sokol, J. M. McKim, M. Colby Goff, et al., Vitamin E reduces oxidant injury to mitochondria and the hepatoxicity of taurochenodeoxycholic acid in the rat,Gastroenterology 114, 164–174 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. S. Flora, A. Mehta, K. Satsangi, G. M. Kannan, and M. Gupta, Aluminum-induced oxidative stress in rat brain: response to combined administration of citric acid and HEDTA,Comp. Biochem. Physiol. C 134, 319–328 (2003).

    Google Scholar 

  20. S. T. Mahieu, M. Gionotti, N. Millen, and M. M. Elias, Effect of chronic accumulation of aluminum on renal function, cortical renal oxidative stress and cortical renal organic anion transport in rats,Arch. Toxicol. 77, 605–612 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. C. Exley, The pro-oxidant activity of aluminum,Free Radical Biol. Med. 36, 380–387 (2004).

    Article  CAS  Google Scholar 

  22. S. C. Bondy, S. X. Guo-Ross, and J. Pien, Mechanisms underlying the aluminum-induced potentiation of the pro-oxidant properties of transition metals,Neurotoxicology 19, 65–71 (1998).

    PubMed  CAS  Google Scholar 

  23. A. Toninello, G. Clari, M. Mancon, G. Tognon, and P. Zatta, Aluminum as an inducer of the mitochondrial permeability transition,J. Biol. Inorg. Chem. 5, 612–623 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. M. Wilhelm, D. E. Jaeger, H. Schull-Cablitz, D. Hafner, and H. Idel, Hepatic clearance and retention of aluminium: studies in the isolated perfused rat liver,Toxicol. Lett. 89, 257–263 (2001).

    Article  Google Scholar 

  25. M. I. Yousef, Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid,Toxicology 199, 47–57 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. F. M. El-Demerdash, Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium,J. Trace Elements Med. Biol. 18, 113–121 (2004).

    Article  CAS  Google Scholar 

  27. K. Abreo, M. Sella, X. Alvarez-Hernandez, and S. Jain, Antioxidants prevent aluminum-induced toxicity in cultured hepatocytes,J. Inorg. Biochem. 98, 1129–1134 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. J. L. Esparza, M. Gomez, M. Romeu, et al., Aluminum-induced pro-oxidant effects in rats: protective role of exogenous melatonin,J. Pineal Res. 35, 32–39 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. M. G. Abubakar, A. Taylor, and G. A. Ferns, Aluminium administration is associated with enhanced hepatic oxidant stress that may be offset by dietary vitamin E in the rat,Int. J. Exp. Pathol. 84, 49–54 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. Z. X. Xu, S. M. Pai, and S. Melethil, Kinetics of aluminum in rats. II: Dose-dependent urinary and biliary excretion,J. Pharm. Sci. 80, 946–951 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. D. G. Shirley and C. J. Lote, Urinary handling of aluminium,Nephron Physiol. 101, 99–103 (2005).

    Article  CAS  Google Scholar 

  32. J. B. Gross, Jr., B. M. Myers, L. J. Kost, S. M. Kuntz, and N. F. LaRusso, Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload,J. Clin. Invest. 83, 30–39 (1989).

    PubMed  CAS  Google Scholar 

  33. G. D. LeSage, L. J. Kost, S. S. Barham, and N. F. LaRusso, Biliary excretion of iron from hepatocyte lysosomes in the rat. A major excretory pathway in experimental iron over-load,J. Clin. Invest. 77, 90–97 (1986).

    PubMed  CAS  Google Scholar 

  34. M. Bragadin, S. Manente, G. Scutari, M. P. Rigobello, and A. Bindoli, A possible transport mechanism for aluminum in biological membranes,J. Inorg. Biochem. 98, 1169–1173 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. P. Zatta, A. Taylor, P. Zambenedetti, R. Milacicm, and P. dell’Antone, Aluminum inhibits the lysosomal proton pump from rat liver,Life Sci. 66, 2261–2266 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. G. Stein, V. Laske, A. Muller, H. Braunlich, W. Linss, and C. Fleck, Aluminium induced damage of the lysosomes in the liver, spleen and kidneys of rats,J. Appl. Toxicol. 7, 253–258 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. R. Barreto, S. Kawakita, J. Tsuchiya, et al., Metal-induced oxidative damage in cultured hepatocytes and hepatic lysosomal fraction: beneficial effect of a curcumin/absinthium compound,Chin. J. Dig. Dis. 6, 31–36 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. K. Ollinger and U. T. Brunk, Cellular injury induced by oxidative stress is mediated through lysosomal damage,Free Radical Biol. Med. 19, 565–574 (1995).

    Article  CAS  Google Scholar 

  39. J. Savory, M. M. Herman, and O. Ghribi, Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain,J. Inorg. Biochem. 97, 151–154 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. A. Campbell, The potential role of aluminium in Alzheimer’s disease,Nephrol. Dial. Transplant. 17, 17–20 (2002).

    PubMed  CAS  Google Scholar 

  41. O. Ghribi, D. A. DeWitt, M. S. Forbes, M. M. Herman, and J. Savory, Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits,Brain Res. 903, 66–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. J. J. Lemasters and A. L. Nieminen, Mitochondrial oxygen radical formation during reductive and oxidative stress to intact hepatocytes,Biosci. Rep. 17, 281–291 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. C. C. Paulusma, M. A. Van Geer, R. Evers, et al., Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione,Biochem. J. 338, 393–401 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. A. L. Tappel, Vitamin E as the biological lipid antioxidant,Vitam. Horm. 20, 493–510 (1962).

    Article  CAS  Google Scholar 

  45. M. Müller, Transcriptional control of hepatocanalicular transporter gene expression,Semin. Liver Dis. 20, 323–337 (2000).

    Article  PubMed  Google Scholar 

  46. J. M. Pascussi, Z. Dvorak, S. Gerbal-Chaloin, E. Assenat, P. Maurel, and M. J. Vilarem, Pathophysiological factors affecting CAR gene expression,Drug Metab. Rev. 35, 255–268 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. M. Schmitt, R. Kubitz, M. Wettstein, S. Yom Dahl, and D. Haussinger, Retrieval of the mrp2 gene encoded conjugate export pump from the canalicular membrane contributes to cholestasis induced by tert-butyl hydroperoxide and chloro-dinitrobenzene,Biol. Chem. 381, 487–495 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. R. Kubitz, M. Wettstein, U. Warskulat, and D. Haussinger, Regulation of the multidrug resistance protein 2 in the rat liver by lipopolysaccharide and dexamethasone,Gastroenterology 116, 401–410 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. N. Ballatori and A. T. Truong, Glutathione as a primary osmotic driving force in hepatic bile formation,Am. J. Physiol. 263, G617-G624 (1992).

    PubMed  CAS  Google Scholar 

  50. K. Kalantar-Zadeh and J. D. Kopple, Trace elements and vitamins in maintenance dialysis patients,Adv. Ren. Replace. Ther. 10, 170–182 (2003).

    PubMed  Google Scholar 

  51. R. Cadorniga, Vitamins in parenteral nutrition,Acta Vitaminol. Enzymol. 4, 141–151 (1982).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, M.A., Alvarez, M.d.L., Pisani, G.B. et al. Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats. Biol Trace Elem Res 116, 329–348 (2007). https://doi.org/10.1007/BF02698017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698017

Index entries

Navigation