Skip to main content

Investigation of the effects of α-tocopherol on the levels of Fe, Cu, Zn, Mn, and carbonic anhydrase in rats with bleomycin-induced pulmonary fibrosis


This study was designed to examine the effects of vitamin E on the levels of Zn, Mn, Cu, Fe, and carbonic anhydrase in rats with bleomycin-induced pulmonary fibrosis. Twenty-one male Wistar albino rats were randomly divided into three groups: bleomycin alone, bleomycin+vitamin E, and saline alone (control group). The bleomycin group was given 7.5 mg/kg body weight (single dose) bleomycin hydrochloride intratracheally. The bleomycin+vitamin E group was also instilled with bleomycin hydrochloride but received injections of α-tocopherol twice a week. The control group was treated with saline alone. Animals were sacrified 14 d after intratracheal instillation of bleomycin. Tissue Zn, Mn, Cu, Fe, and carbonic anhydrase activities were measured in the lung and liver. Lung Cu, Fe, and carbonic anhydrase activity increase in both experimental groups. Zn and Mn levels decreased, except for the Mn level in the bleomycin group. Liver Zn, Mn, and Cu levels decreased in both experimental groups compared to the control group, whereas Fe and carbonic anhydrase activity increased in comparison to the control group. However, the liver tissue Fe level decreased compared to the control group. In the histopathologic assesment of lung sections in the bleomycin+vitamin E group, partial fibrotic lesions were observed, but the histopathologic changes were much less severe compared to the bleomycin-treated group.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. D. Oury, K. Thakker, M. Menache, L. Y Chang, J. D. Crapo, and B. J. Day, Attenuation of bleomycin-induced pulmonary fibrosis by a catalytic antioxidant metalloporphyrin,Am. J. Respir. Cell Mol. Biol. 25(2), 164–169 (2001).

    PubMed  CAS  Google Scholar 

  2. 2.

    S. Sleijfer, Bleomycin-induced pneumonitis,Chest 120, 617–624 (2001).

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    K. Jules-Elysee and D. A. White, Bleomycin-induced pulmonary toxicity,Clin. Chest Med. 11, 1–20 (1990).

    PubMed  CAS  Google Scholar 

  4. 4.

    X. L. Chen, W. B. Li, and A. M. Zhou, Role of endogenous peroxynitrite in pulmonary injury and fibrosis induced by bleomycin A5 in rats,Acta Pharmacol. Sin. 24, 697–702 (2003).

    PubMed  CAS  Google Scholar 

  5. 5.

    B. D. Cheson, Pharmacology of cancer chemotherapy: miscellaneous chemotherapeutic agents, inCancer Principles and Practice of Oncology, V. T. De Vita, Jr., S. Hellmann, and A. S. Rosenberg, eds., Lippincott Willians & Wilkins, Philadelphia, pp. 452–459 (2001).

    Google Scholar 

  6. 6.

    J. Hay, S. Shahzeidi, and G. Laurent, Mechanisms of bleomycin-induced lung damage,Arch. Toxicol. 65, 81–94 (1991).

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    P. D. King and M. C. Perry, Hepatotoxicity of chemothrapy,Oncologist 6, 162–176 (2001).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    T. A. Ruda and P. K. Dutta, Fenton chemistry of Fe(III)-exchanged zeolitic minerals treated with antioxidant,Environ. Sci. Technol. 39(16), 6147–6152 (2005).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    I. Rahman, S. K. Biswas, and A. Kode, Oxidant and antioxidant balance in the airways and airway diseases,Eur. J. Pharmacol. 533, 222–239 (2006).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    S. Kato, Y. Kudo, H. Takahashi, et al., Effects of vitamin E deficiency on bleomycin-induced pulmonary fibrosis in hamsters,Kokyu To Japan 38(5), 445–450 (1990).

    CAS  Google Scholar 

  11. 11.

    S. G. Shena, H. Lia, Y. Y. Zhaoa, Q. Y. Zhangb, and H. W. Suna, The distribution patterns of trace elements in the blood and organs in a rabbit experimental model of Cu pollution and study of haematology and biochemistry parameters,Environ. Toxicol. Pharmacol. 19, 379–384 (2005).

    Article  CAS  Google Scholar 

  12. 12.

    A. Furst, InTowards Mechanism of Metal Carcinogenesis, L. Fishbein, A. Furst, and M. A. Mehlman, eds., Scientific Publishing, Princeton, NJ (1987).

    Google Scholar 

  13. 13.

    A. Kubala-Kuku, J. Braziewicz, D. Bana, U. Majewska, S. Gozdz, and A. Urbaniak, Trace elements load in cancer and normal lung tissues,Nucl. Instrum. Methods Phys. Res. B 150, 193–199 (1999).

    Article  Google Scholar 

  14. 14.

    B. Hultberg, A. Andersson, and A. Lsaksson, Cu ions differ from other thiol reactive metal ions in their effects on the concentrations and redox status of thiols in HeLa cell cultures,Toxicology 117, 89–97 (1997).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    U. Babu and M. L. Failla, Cu status and function of neutrophils are reversibly depressed in marginally and severely Cu-deficient rats,J. Nutr. 120, 1700–1709 (1990).

    PubMed  CAS  Google Scholar 

  16. 16.

    R. G. Hopkins and M. L. Failla, Chronic intake of a marginally low Cu diet impairs in vitro activities of lymphocytes and neutrophils from male rats despite minimal impact on conventional indicators of Cu status,J. Nutr. 125, 2658–2668 (1995).

    PubMed  CAS  Google Scholar 

  17. 17.

    J. L. Stahal, M. E. Cook, M. L. Sunde, and J. L. Greger, Enhanced humoral immunity in pregnancy chicks fed practical diets supplemented with zinc,Appl. Agric. Res. 4, 86–89 (1989).

    Google Scholar 

  18. 18.

    H. M. Dashti, T. C. Mathew, M. M. Jadaon, and E. Ashkanani, Zinc and liver cirrhosis: biochemical and histopathologic assessment,Nutrition 13(3), 206–212 (1997).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    A. A. Al-Bader, M. H. Mosawi, T. A. Hussain, and H. M. Dashti, Effect of dietary selenium, zinc and allopurinol supplements on plasma and tissue Mn levels in rats with thiocetamide-induced liver cirrhosis,Mol. Cell. Biochem. 173, 121–125 (1997).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    D. Mafra and S. M. F. Cozzolino, Erythrocyte Zn and carbonic anhydrase levels in non-dialyzed chronic kidney disease patients,Clin. Biochem. 37, 67–71 (2004).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    E. K. Stabenau and T. Heming, Pulmonary carbonic anhydrase in vertebrate gas exchange organs,Comp. Biochem. Physiol. A 136, 271–279 (2003).

    Article  CAS  Google Scholar 

  22. 22.

    C. W. Pugh and P. J. Ratcliffe, Regulation of angiogenesis by hypoxia: role of the HIF system,Nature Med. 9, 677–684 (2003).

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    B. S. Lane and K. Burgess, Bicarbonate-mediated oxidations with hydrogen peroxide catalyzed by Mn salts,J. Am. Chem. Soc. 123, 2933–2934 (2001).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    H. Ozyurt, S. Sogut, Z. Yildirim, et al., Inhibitory effect of caffeic acid phenethyl ester on bleomycine-induced lung fibrosis in rats,Clin. Chim. Acta 339, 65–75 (2004).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    C. Kilinc, O. Ozcan, E. Karaoz, K. Sunguroglu, T. Kutluay, and L. Karaca, Vitamin E reduces bleomycin-induced lung fibrosis in mice: biochemical and morphological studies,Basic Clin. Physiol. Pharmacol. 4(3), 249–269 (1993).

    CAS  Google Scholar 

  26. 26.

    G. S. R. Hazelrigg, T. M. Boley, I. B. Cetindag, et al., The efficacy of supplemental magnesium in reducing atrial fibrillation after coronary artery bypass,Ann. Thorac. Surg. 77, 824–830 (2004).

    PubMed  Article  Google Scholar 

  27. 27.

    T. H. Maren, A simplified micromethod for the determination of carbonic anhydrase and 1+5 inhibitors,J. Pharm. Exp. Ther. 72, 77–87 (1960).

    Google Scholar 

  28. 28.

    T. Ashcroft, J. M. Simpson, and V. Timbrell, Simple method of estimating severity of pulmonary fibrosis on a numerical scale,J. Clin. Pathol. 41, 467–470 (1988).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    A. Nagai, K. Aoshiba, Y. Ishihara, H. Inano, K. Sakamoto, and E. Yamaguchi, Administration of a-proteinase inhibitor ameliorated bleomycin-induced PF in hamsters,Am. Rev. Respir. Dis. 145, 651–656 (1992).

    PubMed  CAS  Google Scholar 

  30. 30.

    Y. Taooka, A. Maeda, K. Hiyama, S. Ishioka, and M. Yamakido, Effects of neutrophils elastase inhibitor on bleomycin-induced pulmonary fibrosis in mice,Am. J. Respir. Crit. Care Med. 156, 260–265 (1997).

    PubMed  CAS  Google Scholar 

  31. 31.

    Z. E. Sunters and P. N. Shek, Protective effect of liposomal alpha-tocopherol against bleomycin-induced lung injury,Biomed. Environ. Sci. 10(1), 47–59 (1997).

    Google Scholar 

  32. 32.

    M. K. Daga, R. Chbara, B. Sharma, and T. K. Mishra, Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease,J. Biosci. 28(1), 7–11 (2003).

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Z. E. Sunters and P. N. Shek, The pulmonary uptake of intravenously administered liposomal alpha-tocopherol is augmented in acute lung injury,J. Drug Target 4(3), 151–159 (1996).

    Article  Google Scholar 

  34. 34.

    A. Karawajczyk and A. E. F. Buda, The metal bonding domain of the antitumor drug Fe(II)-bleomycin: a DFT investigation,J. Biol. Inorg. Chem. 10, 33–40 (2005).

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    X. Wu, D. Patel, and B. B. Hasinoff, The iron chelating cardioprotective prodrug dexrazoxane does not affect the cell growth inhibitory effects of bleomycin,J. Inorg. Biochem. 98(11), 1818–1823 (2004).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    P. Van Bergen, P. Rauhala, and C. M. Spooner, Hemoglobin and iron evoked oxidative stress in the brain: protection by bile pigments, Mn and nitrosoglutathione,Free Radical Res. 31, 631–640 (1999).

    Article  Google Scholar 

  37. 37.

    G. A. Ramm and R. G. Ruddell, Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis,Semin. Liver Dis. 25(4), 433–449 (2005).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    L. H. Schwartz, T. Urban, and S. Herzberg, Antioxidant minerals and vitamins. Role in cancer prevention,Presse Med. 23(39), 1826–1830 (1994).

    PubMed  CAS  Google Scholar 

  39. 39.

    P. L. Leung and X. L. Lsi, Multielement analysis in serum of thyroid cancer patients before and after a surgical operation,Biol. Trace Element Res. 51(3), 259–266 (1996).

    CAS  Google Scholar 

  40. 40.

    J. M. Hsu, Biochemistry and metabolism of zinc, inZinc and Copper in Medicine, C C Thomas, Springfield, IL, pp. 66–93 (1980).

    Google Scholar 

  41. 41.

    S. Zidenber-Cherr, C. L. Keen, B. Lonnerdal, and L. S. Hurley, Superoxide dismutase activity and lipid peroxidation in the rat: developmental correlations affected by Mn deficiency,J. Nutr. 113, 2498–2504 (1983).

    Google Scholar 

  42. 42.

    J. P. Zarski, J. Arnaud, L. Dumorlad, A. Favier, and M. Rachail, Trace elements (zinc, Copper, manganese) in alcoholic cirrhosis: effect of chronic alcoholism,Gastroenterol. Clin. Biol. 9(10), 664–669 (1985).

    PubMed  CAS  Google Scholar 

  43. 43.

    A. S. Prasad,Biochemistry of Zinc, Plenum, New York (1993).

    Google Scholar 

  44. 44.

    L. M. Lepage, J. C. Giesbrecht, and C. G. Taylor, Expression of T lymphocyte p56lck, a zinc-finger signal transduction protein, is elevated by dietary Zn deficiency and diet restriction in mice,J. Nutr. 129, 1291–1297 (1999).

    Google Scholar 

  45. 45.

    L. Oteiza, K. L. Olin, C. G. Fraga, and C. L. Keen, Oxidant defense systems in testes from zinc-deficient rats,Proc. Soc. Exp. Biol. Med. 213, 85–91 (1996).

    PubMed  CAS  Google Scholar 

  46. 46.

    T. Maeda, M. Shimada, N. Harimoto, et al., Role of tissue trace elements in liver cancers and non-cancerous liver parenchyma,Hepatogastroenterology 52(61), 187–190 (2005).

    PubMed  CAS  Google Scholar 

  47. 47.

    R. E. Tashian, D. Hewett-Emmet, and P. J. Venta, InDiversity and Evolution in the Carbonic Anhydrase Gene Family, F. Botrè, G. Gros, and B. T. Storey, eds., VCH Verlagsge-sellschaft, Weinheim, pp. 151–161 (1991).

    Google Scholar 

  48. 48.

    S. Y. Liao, C. Brewer, J. Závada, J. Pastorek, S. Pastoreková, and A. Manetta, Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas,Am. J. Pathol. 145, 598–609 (1994).

    PubMed  CAS  Google Scholar 

  49. 49.

    J. Pastorek, S. Pastoreková, I. Callebaut, J. P. Mornon, V. Zelník, and R. Opavský, Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment,Oncogene 9, 2877–2888 (1994).

    PubMed  CAS  Google Scholar 

  50. 50.

    L. Simi, G. Venturini, F. Malentacchi, et al., Quantitative analysis of carbonic anhydrase IX mRNA in human non-small cell lung cancer,Lung Cancer 52(1), 59–66 (2006).

    PubMed  Article  Google Scholar 

  51. 51.

    S. Beydemir, M. Ciftci, O. I. Kufrevioglu, and M. E. Buyukokuroglu, Effects of gentamicin sulfate on enzyme activities of carbonic anhydrase from human erythrocytes in vitro and from rat erythrocytes in vivo,Biol. Pharm. Bull. 25(8), 966–969 (2002).

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    S. Hagivara, Y. Ishii, and S. Kitamura, Aerosolized administration of N-acetylcysteine attenuates lung fibrosis induce by bleomycin in mice,Am. J. Respir. Crit. Care Med. 162, 225–231 (2000).

    Google Scholar 

  53. 53.

    H. Wang, M. Yamaya, S. Okinaga, Y. Jia, M. Kamanaka, and H. Takahashi, Bilirubin ameliorates bleomycin-induced pulmonary fibrosis in rats,Am. J. Respir. Crit. Care Med. 165, 406–411 (2002).

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ali Ertekin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ertekin, A., Değer, Y., Mert, H. et al. Investigation of the effects of α-tocopherol on the levels of Fe, Cu, Zn, Mn, and carbonic anhydrase in rats with bleomycin-induced pulmonary fibrosis. Biol Trace Elem Res 116, 289–300 (2007).

Download citation

Index entries

  • Bleomycin
  • carbonic anhydrase
  • pulmonary fibrosis
  • tissue trace elements