Skip to main content

Relating laboratory and outdoor exposure of coatings: II

Effects of relative humidity on photodegradation and the apparent quantum yield of acrylic-melamine coatings

Abstract

The effect of relative humidity (RH) from ≪1% to 90% on the photodegradation and quantum efficiency for a partially-methylated melamine acrylic coating exposed to UV/50°C condition has been investigated. The UV source is supplied by two 1000 W Xenon arc solar simulators and the relative humidities are provided by specially designed humidity generators, which control relative humidity in the 0 to 90% range to within <3% of the measured values. Radiation absorbed in the coating and degradation of the films are measured by UV-visible and Fourier transform infrared spectroscopies, respectively. The degradation at a particular RH/UV condition consists of four different modes: reactions taken place during post curing, hydrolysis due to water in the film at a particular RH, photodegradation, and moisture-enhanced photodegradation. Total degradation, hydrolysis, and moisture-enhanced photodegradation increase with increasing RH. At low relative humidities, photodegradation is an important degradation mode but hydrolysis dominates the degradation at high RH levels. Moisture in the film is found to increase the quantum efficiency of acrylic melamine coating photodegradation.

This is a preview of subscription content, access via your institution.

References

  1. Burroughs, W.J.,Weather Cycles: Real or Imaginary, Cambridge University Press, New York, 1992.

    Google Scholar 

  2. Martin, J.W., Saunders, S.C., Floyd, F.L., and Wineburg, J.P., “Methodologies for Predicting the Service Life of Coatings,”Federation Series on Coatings Technology, Federation of Societies for Coatings Technology, Blue Bell, PA, 1996.

    Google Scholar 

  3. Norins, A.L., inThe Biological Effects of Ultraviolet Radiation, Urbach, F. (Ed.), Pergamon Press, New York, p. 605, 1969.

    Google Scholar 

  4. Scotto, J. and Fears, T.R.,Cancer Invest., 5, 275 (1987).

    PubMed  CAS  Article  Google Scholar 

  5. Caldwell, M.M.,Photophysiol., 6, 131 (1971).

    CAS  Google Scholar 

  6. Hirt, R.C., Schmitt, R.G., Searle, N.D., and Sullivan, A.P.,J. Opt., Soc. Am., 50, 706 (1960).

    Article  ADS  CAS  Google Scholar 

  7. Zerlaut, G.Z. and Ellinger, M.L.,J. Oil & Colour Chemists’ Assoc., 64, 387 (1981).

    Google Scholar 

  8. Zerlaut, G.A., inAccelerated and Outdoor Durability Testing of Organic Materials, Ketola, W.D. and Grossman, D. (Eds.), ASTM STP 1202, American Society for Testing and Materials, Philadelphia, PA, p. 1, 1993.

    Google Scholar 

  9. Randy, B. and Rabeck, J.F.,Photodegradation, Photooxidation and Photostabilization of Polymers: Principles and Applications, John Wiley and Sons, New York, p. 6, 1975.

    Google Scholar 

  10. Rabek, J.F.,Polymer Photodegradation-Mechanisms and Experimental Methods, Chapman and Hall, New York, pp 1–66, 1995.

    Google Scholar 

  11. Guillet, J.E., Li, S.K.L., and Ng, H.C.,Am. Chem. Soc. Symp. Series 266, American Chemical Society, Washington, D.C., p. 165, 1984.

    Google Scholar 

  12. Dan, E. and Guillet, J.E.,Macromolecules, 6, 230 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Gupta, A., Rembaum, A., and Moacanin, J.,Macromolecules, 11, 1285 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Martin, J.W., Nguyen, T., Byrd, E., Embree, N., and Dickens, B.,Polym. Deg. Stab., 75, 193 (2002).

    Article  CAS  Google Scholar 

  15. Bauer, D.R., Gerlock, J.L., and Mielewski, D.F.,Polym. Deg. and Stab., 36, 9 (1992).

    Article  CAS  Google Scholar 

  16. Bauer, D.R., “Chemical Criteria for Durable Automotive Topcoat,”Journal of Coatings Technology,66, No. 835, 57 (1994).

    CAS  Google Scholar 

  17. Lemaire, J. and Siampiringue, N., inService Life Prediction of Organic Coatings, A Systematic Approach, Bauer, D. and Martin, J.W. (Eds.), ACS Symposium Series 722, American Chemical Society, Washington, D.C., p. 246, 1999.

    Chapter  Google Scholar 

  18. Carduner, K.R., Carter, R.O. III, Zinbo, M., Gerlock, J.L., and Bauer, D.R.,Macromolecules, 21, 1598 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Gerlock, J.L., Mielewski, D.F., Bauer, D.R., and Carduner, K.R.,Macromolecules, 21, 1604 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Lamers, P.L., Johnston, B.K., and Tyler, W.H.,Polym. Deg. Stab., 55, 309 (1997).

    Article  CAS  Google Scholar 

  21. Bauer, D.R. and Briggs, L.M., inCharacterization of Highly Crosslinked Polymers, Labana, S.S. and Dickie, R.A. (Eds.), ACS Symposium Series 243, American Chemical Society, Washington, D.C., p. 271, 1983.

    Chapter  Google Scholar 

  22. Bauer, D.R. and Mielewski, D.F.,Polym. Deg. Stab., 40, 349 (1993).

    Article  CAS  Google Scholar 

  23. Weast, R. (Ed.),Handbook of Chemistry and Physics, 53rd ed., CRC Press, p. #D148, 1972.

  24. Gerlock, J.L., Van Oene, H., and Bauer, D.R.,Euro. Polym. J., 19, 11 (1983).

    Article  CAS  Google Scholar 

  25. Gerlock, J.L., Dean, M.J., Korniski, T.J., and Bauer, D.R.,Ind. Eng. Chem. Prod. Res. Dev., 25, 449 (1986).

    Article  CAS  Google Scholar 

  26. English, A.D. and Spinelli, H.J., inCharacterization of Highly Crosslinked Polymers, Labana, S.S. and Dickie, R.A. (Eds.), ACS Symposium Series 243, American Chemical Society, Washington, D.C., p. 257, 1984.

    Chapter  Google Scholar 

  27. English, A.D. and Spinelli, H.J., “Degradation Chemistry of Primary Crosslinks in High Solids Enamel Finishes: Solar Assisted Hydrolysis,”Journal of Coatings Technology,56, No. 711, 43 (1984).

    CAS  Google Scholar 

  28. Nguyen, T., Martin, J.W., Byrd, E., and Embree, N.,Polym. Deg. Stab., 77, 1 (2002).

    Article  CAS  Google Scholar 

  29. Bauer, D.R.,J. Appl. Polym. Sci., 27, 3651 (1982).

    Article  CAS  Google Scholar 

  30. Rodgers, W.R., Garner, D.P., and Cheever, G.D., “Study of the Attack of Acidic Solutions on Melamine-Acrylic Basecoat/Clearcoat Paint Systems,”Journal of Coatings Technology,70, No. 877, 83 (1998).

    Article  CAS  Google Scholar 

  31. Mori, K., Tachi, K., Muramatsu, M., and Torita, K., inProc. XXIV Fatipec Congress, A, p. 101, 1998.

  32. Schulz, U., Trubiroha, P., Schernau, U., and Baumgart, H.,Prog. Org. Coat., 40, 151 (2000).

    Article  CAS  Google Scholar 

  33. Wernstäh, K.L.,Polym. Deg. Stab., 54, 57 (1996).

    Article  Google Scholar 

  34. Holubka, J.W., Schmitz, P.J., and Xu, Li-F., “Acid Etch Resistance of Automotive Clearcoats. I: Laboratory Test Method Development,”Journal of Coatings Technology,72, No. 901, 77 (2000).

    Article  CAS  Google Scholar 

  35. Prane, J.A., “Introduction to Polymers and Resins,”Federation Series on Coatings Technology, Federation of Societies for Coatings Technology, Philadelphia, PA, 1986.

    Google Scholar 

  36. Rancourt, J.D.,Optical Thin Films, User’s Handbook, McGraw-Hill, New York, p. 183, 1987.

    Google Scholar 

  37. Bauer, D.R.,Prog. Org. Coat., 23, 105 (1993).

    Article  CAS  Google Scholar 

  38. Johnson, B.W. and McIntire, R.,Prog. Org. Coat., 27, 95 (1996).

    Article  CAS  Google Scholar 

  39. Decker, C. and Bendaikha, T., inInt. Conf. Adv. Stab. and Controlled Deg. Polymers, Patsis, A. (Ed.), Technomic, Lancaster, PA, p. 143, 1989.

    Google Scholar 

  40. Decker, C., Moussa, K., and Bendaikha, T.,J. Polym. Sci., Polym. Chem., 29, 739 (1991).

    Article  CAS  Google Scholar 

  41. Costa, G.W., Hirt, R.C., and Smalley, D.L.,J. Chem. Phys., 18, 434 (1950).

    Article  ADS  CAS  Google Scholar 

  42. Fox, R.B., Isaacs, L.G., Stokes, S., and Kagarise, J.,J. Polym. Sci., A1, 2085 (1964).

    Google Scholar 

  43. Bauer, D.R.,Prog. Org. Coat., 14, 193 (1986).

    Article  CAS  Google Scholar 

  44. Chang, T.T.,Prog. Org. Coat., 29, 45 (1996).

    Article  CAS  Google Scholar 

  45. Blank, W.J., “Reaction Mechanism of Melamine Resins,”Journal of Coatings Technology,51, No. 656, 61, (1979).

    CAS  Google Scholar 

  46. Santer, J.O.,Prog. Org. Coat., 12, 309 (1984).

    Article  CAS  Google Scholar 

  47. Bauer, D. and Dickie, R.,J. Appl. Polym. Sci., 18, 2014 (1980).

    Google Scholar 

  48. Larkin, P.J., Makowski, M.P., Colthup, N.B., and Flood, L.A.,Vibrational Spectros., 17, 53 (1998).

    Article  CAS  Google Scholar 

  49. Colthup, N.B., Daly, L.H., and Wiberley, S.E.,Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, New York, p. 439, 1990.

    Google Scholar 

  50. Samaraweera, U. and Jones, F.N., “Possible Reaction Pathways for Self-Condensation of Melamine Resins; Reversibility of Methylene Bridge Formation,”Journal of Coatings Technology,64, No. 804, 69 (1992).

    CAS  Google Scholar 

  51. Adamson, A.W.,Physical Chemistry of Surfaces, 2nd ed., Interscience, New York, p. 585, 1967.

    Google Scholar 

  52. Berge, A., Kvaeven, B., and Ugelstad, J.,European Polym. J., 6, 981 (1970).

    Article  CAS  Google Scholar 

  53. Berge, A. Gudmundsen, S., and Ulgelstad, J.,European Polym. J., 5, 171 (1969).

    Article  CAS  Google Scholar 

  54. Nguyen, T., Martin, J.W., Saunders, S., and Byrd, E., “Modes, Mechanism and Model for Hydrolysis of Acrylic-Melamine Coatings in the Absence of UV Light,”Proc. 7th Annual Meeting of the Federation of Societies for Coatings Technology, Atlanta, GA, November, pp. 759–796, 2001.

  55. Bascom, W.D.,J. Adhesion, 2, 168 (1970).

    Article  Google Scholar 

  56. Mayne, J.E.O. and Mills, D.J.,J. Oil & Colour Chemists’ Assoc., 58, 155 (1975).

    CAS  Google Scholar 

  57. Nguyen, T., Hubbard, J.B., and Pommersheim, J.M., “Unified Model for the Degradation of Organic Coatings on Steel in a Neutral Electrolyte,”Journal of Coatings Technology,68, No. 855, 45 (1996).

    CAS  Google Scholar 

  58. Corti, H., Fernandez-Prizi, R., and Gomez, D.,Prog. Org. Coat., 10, 5 (1982).

    Article  CAS  Google Scholar 

  59. Mills, D.J. and Mayne, J.E.O., inCorrosion Control by Organic Coatings, Leidheiser, H. Jr., (Ed.), Nat. Assoc. Corr. Eng., Houston, TX, p. 12, 1981.

    Google Scholar 

  60. Cuthrell, R.E.,J. Appl. Polym. Sci., 12, 1263 (1968).

    Article  CAS  Google Scholar 

  61. Karyakina, M.I. and Kuzmak, A.E.,Prog. Org. Coat., 18, 325 (1990).

    Article  CAS  Google Scholar 

  62. VanLandingham, M.R., Eduljee, R.F., and Gillespie, J.W. Jr.,J. Appl. Polym. Sci., 71, 669 (1999).

    Google Scholar 

  63. VanLandingham, M., Nguyen, T., Byrd, E., and Martin, J.W., “On the Use of the Atomic Force Microscope to Monitor Physical Degradation of Polymeric Coatings Surfaces,”Journal of Coatings Technology,73, No. 923, 43 (2001).

    Article  CAS  Google Scholar 

  64. Leadley, S.R., Shakesheff, K.M., et al.,Biomaterials, 19, 1353 (1998).

    PubMed  Article  CAS  Google Scholar 

  65. Gopferich, A. and Langer, R.,J. Polym. Sci., Part A, Polym. Chem., 31, 2445 (1993).

    Article  CAS  Google Scholar 

  66. Gu, X., Raghavan, D., Nguyen, T., and VanLandingham, M.,Polym. Deg. Stab., 74, 139 (2001).

    Article  CAS  Google Scholar 

  67. Streitwieser, D. Jr. and Heatcock, C.H.,Introduction to Organic Chemistry, 2nd ed., Macmillan Publishing, New York, p. 256, 1981.

    Google Scholar 

  68. Grassie, N. and MacCallum, J.R.,J. Polym. Sci., Part A, 2, 983 (1964).

    CAS  Google Scholar 

  69. Fox, R.B., Isaccs, L.G., and Stokes, S.,J. Polym. Sci., Part A, 1, 1079 (1963).

    CAS  Google Scholar 

  70. Gupta, A., Liang, R., Tsay, F.D., and Moacanin, J.,Macromolecules, 13, 1696 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

100 Bureau Dr., Stop 8621, Gaithersburg, MD 20899.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nguyen, T., Martin, J., Byrd, E. et al. Relating laboratory and outdoor exposure of coatings: II. Journal of Coatings Technology 74, 65–80 (2002). https://doi.org/10.1007/BF02697976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697976

Keywords

  • Melamine
  • Coating Technology
  • Outdoor Exposure
  • Relative Humidity Level
  • Apparent Quantum Yield