Skip to main content
Log in

Stormer-numerov approximation for numerical solutions of ordinary and partial differential equations

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Stormer-Numerov approximations of high accuracy were developed for solutions of non-linear boundary value problems and nonlinear elliptic partial differential equations. The approximations can be easily adopted also for parabolic partial differential equations in one and more space dimensions and feature fourth-order accuracy. For boundary value problems only three nodes are necessary to obtain the desired fourth order accuracy. The finite difference formula for parabolic partial differential equations can be readily generalized to a nonequidistant mesh so that automatic regridding in space may be used. The Stomer-Numerov approximations are important for solution of problems where storage limitations and computer time expenditure preclude standard second order methods. Because of the fourth order approximations a low number of mesh points can be used for a majority of chemical engineering problems. The application of Stormer-Numerov approximations is illustrated on a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubicek, M. and Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications, Prentice Hall, Engelwood Cliffs, New Jersey (1982).

    Google Scholar 

  2. Hirsh, R.S.:J. Comp. Phys.,19, 90 (1975).

    Article  Google Scholar 

  3. Hildebrandt, F.B.: Finite-Difference Equations and Simulations, Prentice Hall, Engelwood Cliffs, New Jersey (1968).

    Google Scholar 

  4. Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalyst, Vols. 1 and 2, Oxford Univ. Press, London (1975).

    Google Scholar 

  5. Gierer, A. and Meinhardt, H.:Kybernetik,12, 30 (1972).

    Article  CAS  Google Scholar 

  6. Hunding, A.:J. Chem. Phys.,72, 5241 (1980).

    Article  CAS  Google Scholar 

  7. Birkhoff, G. and Gulati, S.:SIAM J. Num. Anal., 11, 700(1974).

    Article  Google Scholar 

  8. Kantorovich, L. and Krylov, V.I.: Approximate Methods of Higher Analysis, Interscience, New York (1958).

    Google Scholar 

  9. Boisvert, R.D.:SIAM J. Sci. Comp.,2, 268 (1981).

    Article  Google Scholar 

  10. Dorr, F.W.:SIAM Res.,12, 248 (1970).

    Article  Google Scholar 

  11. Crank, J. and Nicolson, P.:Proc. Comb. Phil. Soc., 43, 50 (1947).

    Article  Google Scholar 

  12. Villadsen, J.V. and Stewart, W.E.:Chem. Eng. Sci.,22, 1483 (1967).

    Article  Google Scholar 

  13. Rhee, H.K., Lewis, R.P., and Amundson, N.R.:IEC Fund.,13, 317 (1974).

    Article  CAS  Google Scholar 

  14. Erneux, T. and Herschkowitz-Kaufman, M.J.:J. Chem. Phys.,66, 248 (1977).

    Article  CAS  Google Scholar 

  15. Dew, P.W. and Walsh, J.E.:ACM Trans. Math. Software, 7, 295 (1981).

    Article  Google Scholar 

  16. Nicolis, G. and Prigogine, I.: Self Organization in Nonequilibrium Systems, John Wiley, New York(1977).

    Google Scholar 

  17. Brandt, A.:Math. Comp.,31, 333 (1977).

    Article  Google Scholar 

  18. Roose, D. and Hlavacek, V.:SIAM J. Appl. Math.,43, 1075 (1983).

    Article  Google Scholar 

  19. Hlavacek, V. and Kubicek, M.:Chem. Eng. Sci.,26, 1737(1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Yang, JW. Stormer-numerov approximation for numerical solutions of ordinary and partial differential equations. Korean J. Chem. Eng. 6, 165–171 (1989). https://doi.org/10.1007/BF02697676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697676

Keywords

Navigation