Skip to main content
Log in

Effect of temperature on polymer migration II: Concentration equation

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Polymer migration is a generally well-known phenomenon in a flow field, and it has been verified that the sources of such phenomena are nonhomogeneity of the flow, concentration effects and hydrodynamic interactions between the polymer molecules. In addition, temperature effects were found to be another source of polymer migration. The Langevin equation for a polymer molecule was first derived from single chain dynamics using a kinetic theory for the bead-spring elastic harmonic dumbbell model, as described in part I (reference [1]). In this paper the diffusion equation and concentration profile of the polymer molecules induced by a temperature gradient are obtained from the Fokker-Planck equation. A new differential operator is also introduced to calculate the concentration profile. From the concentration equation obtained in the general flow geometry, we find that in dilute polymer solution there are significant effects on the polymer migration not only due to the nonhomogeneity of the flow field but also due to temperature gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

radius of bead

A:

arbitrary quantity A+ =(A1+A2)/2 (A=V, ζ and β) A- =A2-A1 (A = V, ζ and β)

C:

local dumbbell concentration

H:

spring constant

k:

Boltzmann’s constant

r:

position vector

ri :

position vector of ith bead

rc :

center of mass, = (r1 + r2)/2

R:

internal configuration coordinate, = r2 - r1

t:

time

T:

absolute temperature

v:

fluid velocity

vc :

fluid velocity at the center of mass

v0 :

fluid velocity at the origin

ζ:

friction coefficient

η:

viscosity

v:

1/ζ

ζ:

kT/ζ

Ψ :

probability function

φ:

probability function (normalized with respect to internal coordinates)

Δ:

polymer migration velocity

References

  1. Inn, Y.W., Choi, H.J. and Jhon, M.S.:Korean J. Chem. Eng.,7(2), 138(1990).

    CAS  Google Scholar 

  2. Bird, R. B., Curtiss, C.F., Armstrong, R. C. and Hassager, O.: “Dynamics of Polymeric Liquids, Vol. 2”, Wiley, New York(1987).

    Google Scholar 

  3. Shafer, R. H., Laiken, N. and Zimm, B. H.:Biophys. Chem.,2, 180 (1974).

    Article  CAS  Google Scholar 

  4. Aubert, J. H. and Tirrell, M.:J. Chem. Phys.,72(4), 2694 (1980).

    Article  CAS  Google Scholar 

  5. Aubert, J. H., Prager, S. and Tirrell, M.:J. Chem. Phys.,73(8), 4103 (1980).

    Article  CAS  Google Scholar 

  6. Sekhon, G., Armstrong, R. C. and Jhon, M. S.:J. Poly. Sci.: Poly. Phys. Ed.,20, 947 (1982).

    Article  CAS  Google Scholar 

  7. Crone, R.M., Jhon, M.S. and Choi, H.J.:J Mol. Liquids,59, 115 (1994).

    Article  CAS  Google Scholar 

  8. Choi, H. J. and Jhon, M. S.: in “Theoretical and Applied Rbeology”, Moldenaers, P. and Keunings, R. ed, Elsevier Science, Amsterdam, The Netherlands, p. 464 (1992).

  9. Brunn, P.O.:Int. J. Multiphase Flow,9(2), 187 (1983).

    Article  CAS  Google Scholar 

  10. Doi, M. and Edwards, S. F.: “The Theory of Polymer Dynamics”, Oxford Univ. Press, Oxford (1986).

    Google Scholar 

  11. Edwards, S. F. and Freed, K.F.:J. Chem. Phys.,61, 1189 (1974).

    Article  CAS  Google Scholar 

  12. Freed, K. F. and Edwards, S. F.:J. Chem. Phys.,61, 3626 (1974).

    Article  CAS  Google Scholar 

  13. Freed, K. F. and Muthukumar, M.:J. Chem. Phys.,68, 2088 (1978).

    Article  CAS  Google Scholar 

  14. Freed, K. F.: in “Progress in Liquid Physics”, Croxton, C. A. ed., Wiley, New York, p. 343 (1978).

    Google Scholar 

  15. Jhon, M. S., Sekhon, G. and Armstrong, R.: in “Advances in Chemical Physics”, Prigogine, I. and Rice, S. A. ed., Wiley, N. Y., p. 66(1987).

    Google Scholar 

  16. Freed, K. F. and Perico, A.:Macromolecules,14, 1290 (1981).

    Article  CAS  Google Scholar 

  17. Denn, M. M.: “Process Fluid Mechanics”, Prentice-Hall, New Jersey p. 235 (1980).

    Google Scholar 

  18. Tanner, R. I.: “Engineering Rheology”, Oxford Univ. Press, Oxford, p. 177 (1985).

    Google Scholar 

  19. Larson, R. G.: “Constitutive Equations for Polymer Melts and Solutions”, Butterworths, Boston, p. 41 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.J., Inn, Y.W. & Jhon, M.S. Effect of temperature on polymer migration II: Concentration equation. Korean J. Chem. Eng. 11, 145–152 (1994). https://doi.org/10.1007/BF02697459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697459

Keywords

Navigation