Skip to main content
Log in

Analysis and simulation of calendering process of non-newtonian polymeric fluids

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Maxwellian fluid flow between asymmetric calenders was analyzed by the numerical solution to the simplified equations of motion and energy equation. The solution techniques combined the power-law weighted upwind difference method for the energy equation with the analytical solution of the momentum equations. The calculated results provided not only pressure and temperature distributions of the flow field, but also the power consumption and the roll separating force of the calendering processes. The decrease in the elastic shear modulus led to the reduction in the temperature profile as well as in the power requirement. The asymmetry in the roll speeds generated higher temperature field throughout the whole flow region due to the higher viscous heating, compared with the case of the symmetry in the roll speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaskell, R.E.: J. Appl. Mech.,17, 334 (1950).

    Google Scholar 

  2. Bergen, J.R. and Scott, G.W.: J. Appl. Mech.,18, 101 (1951).

    CAS  Google Scholar 

  3. Mckelvey, J.M.:“Polymer Processing”, John Wiley, N.Y. Ch. 9 (1962).

    Google Scholar 

  4. Brasinsky, I. Cosway, H.F. ValleJr., CF. Clark Jones, R. and Story, V.: J. Appl. Polymer Sci.,14, 2771 (1970).

    Article  Google Scholar 

  5. Torner, R.V.:“Grundprozesse der Verarbeitung von Polymeren”, VEB, Leipzig, E. Germany (1974).

    Google Scholar 

  6. Alston Jr., W.W. and Astill, K.N.: J. Appl. Polymer Sci.,17, 3157(1973).

    Article  Google Scholar 

  7. Paslay, P.R.: J. Appl. Mech.,24, 602 (1957).

    Google Scholar 

  8. Tokita, N. and White, J.L: J. Appl. Polymer Sci.,11, 321 (1967).

    Article  Google Scholar 

  9. Chong, J.S.: J. Appl. Polymer Sci.,12 191 (1968).

    Article  CAS  Google Scholar 

  10. Takserman-Krozer, R. Schenkel, G. /man, G. Rheo. Acta.,14, 1066 (1975).

    Article  Google Scholar 

  11. Kiparissides, C. and Vlachopoulos, J.: Polymer Eng. Sci.,18, 210(1978).

    Article  CAS  Google Scholar 

  12. Lee, Jae Wook and Lee, Ki Jun: J. KIChE,19, 303 (1981).

    CAS  Google Scholar 

  13. Middleman, S.:“Fundamental- of Polymer Processing”, McGraw-Hill, New York (1977).

    Google Scholar 

  14. Patankar, S.V.:“Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York, Ch. 5 (1980).

    Google Scholar 

  15. Finston, M.: J. Appl. Mech.,18, 12 (1951).

    CAS  Google Scholar 

  16. Petrusanskij, J. Yu. and Stachaev, A.I.: Uch. Zap. Jaroslavsk Tech. Inst., t23 (1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su Yu, J., Lee, J.W. & Lee, K.J. Analysis and simulation of calendering process of non-newtonian polymeric fluids. Korean J. Chem. Eng. 1, 173–180 (1984). https://doi.org/10.1007/BF02697450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697450

Keywords

Navigation