Skip to main content
Log in

Rigorous treatment of adsorption data for multicomponent predictions

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Three considerations in the rigorous treatment of adsorption data for multicomponent adsorption equilibria are discussed below: (1) choice of pure-component model for the ideal adsorbed solution theory; (2) variable sensitivity analysis for the choice of independent variable sets; and (3) the error-in-variables method for binary interaction parameters. The O’Brien and Myers model gave better agreement with adsorption data than the Langmuir model for single components. However, in the prediction of binary and ternary component adsorption equilibria, IAS theory combined with the O’Brien and Myers model did not show any improvement over the IAS theory with Langmuir model. Sensitivity analysis showed that large sensitivities of dependent variables to independent variables can give large deviations in the prediction of binary component adsorption. This motivated the use of the error-in-variables method, which was shown to be superior to conventional least-squares in calculating the Wilson binary parameters for the prediction of ternary component equilibria with O2-N2-CO adsorption data on zeolite 10X. Smaller deviations in the predictions of total amount of adsorption were found from the parameters regressed by EVM, but the errors in the prediction of mole fraction were not reduced significantly compared to the traditional least squares approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talu, 0. and Myers, A. L.:AIChE J,34, 1887 (1988).

    Article  CAS  Google Scholar 

  2. Kemeny, S. and Manczinger, J.:Chem. Eng. Sci, 33, 71(1978).

    Article  CAS  Google Scholar 

  3. Kemeny, S. and Manczinger, J., Skjold-Jorgense, S. and Toth, K.:AIChE J.,28, 20 (1982).

    Article  CAS  Google Scholar 

  4. Richter, E., Schutz, W. and Myers, A. L.:Chem. Eng. Sci,44, 1609 (1989).

    Article  CAS  Google Scholar 

  5. Ritter, J. A. and Yang, R. T.:I & EC Research,26, 1679 (1987).

    CAS  Google Scholar 

  6. High, M. S. and Danner. R. P.:AIChE J.,32. 1138 (1986).

    Article  CAS  Google Scholar 

  7. Reilly, P. M. and Patino-Leal, H.:Technometrics,23, 221 (1981).

    Article  Google Scholar 

  8. O’Brien, J. A. and Myers, A. L.:J. Chem. Soc. Faraday Trans.,1, 1467(1984).

    Google Scholar 

  9. O’Brien, J. A. and Myers, A. L.:I & EC Research, 27, 2085 (1988).

    Article  CAS  Google Scholar 

  10. Myers, A. L. and Prausnitz, J. M.:AIChE J.,11, 121 (1965).

    Article  CAS  Google Scholar 

  11. Suwanayuen, S. and Danner, R. P.:AIChE J.,26, 68 (1980).

    Article  CAS  Google Scholar 

  12. Cochran, T. W., Kabel, R. L. and Danner, R. P.:AIChE J.,31, 268 (1985).

    Article  CAS  Google Scholar 

  13. Talu, O. and Myers, A. L.:AIChE J,34, 1931 (1988).

    Article  CAS  Google Scholar 

  14. Valko, P. and Vajda, S.:Computers Chem. Engng.,11, 37(1987).

    Article  CAS  Google Scholar 

  15. Kim, I. W., Liebman, M. J. and Edgar, T. F.:AIChE J.,36, 985 (1990).

    Article  CAS  Google Scholar 

  16. Edgar, T. F. and Himmelblau. D. M.: “Optimization of Chemical Processes”, McGraw Hill (1988).

  17. Danner, R. P. and Wenzel, L. A.:AIChE J.,15, 515 (1969).

    Article  CAS  Google Scholar 

  18. Cochran, T. W., Kabel, R. L. and Danner, R. P.:AIChE J.,31, 2075(1985).

    Article  CAS  Google Scholar 

  19. Dorfman, L. R. and Danner, R. P.:AIChE Symp. Ser.,71, 30 (1975).

    CAS  Google Scholar 

  20. Hyun, S. H. and Danner, R. P.:J. Chem. Eng. Data,27, 196 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, IW. Rigorous treatment of adsorption data for multicomponent predictions. Korean J. Chem. Eng. 10, 85–92 (1993). https://doi.org/10.1007/BF02697399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697399

Keywords

Navigation