Skip to main content

Automatic generation of the symptom tree model for process fault diagnosis

Abstract

The Symptom Tree Model (STM) has been studied extensively as a model for fault diagnosis in chemical processes and has been applied to real processes. In this study, a program to build a model, AUSST (Automatic Synthesis of the Symptom Tree model), which generates the STM automatically is developed. The input information supplied to AUSST includes the process topology and the unit model library. The unit model library is represented in the form of mini-fault trees which can be constructed systematically through qualitative abstraction from the mathematical model or the operation data and experienced operators. AUSST has worked well, the generated symptom trees describe the paths of fault propagation sufficiently and contain all the possible primal faults. AUSST helps to assure the accuracy of the STM as well as managing the STM consistently. It is expected that AUSST reduces the engineering efforts required to develop a fault diagnostic system for a new process.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Isermann, R.:Automatica,20, 387 (1984).

    Article  Google Scholar 

  2. 2.

    Kuipers, B.:Artific. Intell.,29, 289(1986).

    Article  Google Scholar 

  3. 3.

    Kuipers, B.:IEEE Trans. Syst. Man Cybern.,17, 432 (1987).

    Article  Google Scholar 

  4. 4.

    Fussell, J. B.: NATO Advanced Study Institute on Generic Techniques in Systems Reliability Assessment, Nordhoff (1973).

  5. 5.

    Powers, G. J. and Tomkins Jr, F. C.:AIChE J.,20, 376 (1974).

    Article  CAS  Google Scholar 

  6. 6.

    Martin-Solis, G. A., Andow, P. K. and Lees, F. P.:Trans. IChemE,60, 14 (1982).

    CAS  Google Scholar 

  7. 7.

    Han, J. H. and Yoon, E. S.: IFAC Workshop on Fault Detection and Safety in Chemical Plants, Kyoto, 126 (1986).

  8. 8.

    Kim, C.J., Oh, J.K. and Yoon, E. S.:HWAHAK KONGHAK,28, 417(1990).

    CAS  Google Scholar 

  9. 9.

    Oh, J.K., Yoon, E. S. and Choi, B.N.:KACC,2, 805 (1989).

    Google Scholar 

  10. 10.

    Iri, M., Aoki, E., O’Shima, E. and Matsuyama, H.:Comput. & Chem. Eng.,3, 489 (1979).

    Article  Google Scholar 

  11. 11.

    Kramer, M.A. and Palowitch Jr., B. L.:AIChE J., 33, 1067 (1987).

    Article  CAS  Google Scholar 

  12. 12.

    Oyeleye, O. O., Finch, F.E. and Kramer, M.A.:Chem. Eng. Comm.,96, 205 (1990).

    Article  CAS  Google Scholar 

  13. 13.

    Lapp, S. A. and Powers, G. J.:IEEE Trans. Reliab.,26, 2 (1977).

    Article  Google Scholar 

  14. 14.

    Shafaghi, A., Andow, P. K. and Lees, F. P.:Chem. Eng. Res. Des.,62, 101 1984.

    CAS  Google Scholar 

  15. 15.

    Yoon, E.S.: Ph.D. Thesis, MIT (1982).

  16. 16.

    Nam, D. S.: M. S. Thesis, SNU (1992).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nam, D.S., Choe, Y.J., Yoon, Y.H. et al. Automatic generation of the symptom tree model for process fault diagnosis. Korean J. Chem. Eng. 10, 28 (1993). https://doi.org/10.1007/BF02697374

Download citation

Keywords

  • GOut
  • Fault Diagnosis
  • Symptom Tree
  • Fault Tree
  • Unit Model