Skip to main content
Log in

Dissipative structures in a reaction-diffusion system

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A transient analysis of reaction-diffusion equations associated with the model reaction of Prigogine and Lefever (Brusselator model), has been performed. For low system lengths and for fixed boundary conditions, steady state solutions with the low amplitude are unstable. For zero flux boundary conditions the multiplicity of symmetric solutions with the same wave number may exist and the majority of them are unstable. The diffusion of initial components induces relaxation oscillations in space for fixed as well as zero flux boundary conditions. The amplitude of the oscillations increases as the diffusion coefficient of the initial component decreases. For conditions of relaxation oscillations the spatial profiles result in single or multiple propagating fronts.

High system lengths for both zero flux and periodic boundary conditions, may give rise to a multipeak incoherent wave pattern. For periodic boundary conditions the multiplicity of waves has been observed. Numerical simulation of two-dimensional spatial structures reveals the existence of certain similarities between the one- and two-dimensional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herschkowitz-Kaufman, M.:Bull. Math. Biol.,37, 589(1975).

    Article  Google Scholar 

  2. Ortoleva, P. and Ross, J.:J. Chem. Phys.,60, 5090 (1974).

    Article  CAS  Google Scholar 

  3. Nicolas, C., Erneux, T. and Herschkowitz-Kaufman, M.:Adv. Chem. Phys.,38, 263(1978).

    Article  Google Scholar 

  4. Nicolis, G. and Prigogine, I.: Self Organization in NonEquilibrium Systems, John Wiley, New York (1977).

    Google Scholar 

  5. Nicolis, G. and Prigogine, I.:J. Chem. Phys.,46, 3542 (1967).

    Article  Google Scholar 

  6. Kubicek, M., Ryzler, V. and Marek, M.:Biophys. Chem.,8, 235(1978).

    Article  CAS  Google Scholar 

  7. Prigogine, I. and Lefever, R.:J. Chem. Phys.,48, 1695(1968).

    Article  Google Scholar 

  8. Kim, S.H. and Yang, J.:Korean J. of Chem. Eng.,6, 165 (1989).

    CAS  Google Scholar 

  9. Evans, D.J.: Mathematics and Computers in Simulation XXI, 270 (1979).

    Article  Google Scholar 

  10. Hlavacek, V., Janssen, R. and Van Rompay, P.:Z. Naturforsch,37a, 39(1982).

    CAS  Google Scholar 

  11. Hlavacek, V. and Kubicek, M.:Chem. Eng. Sci.,26, 1737 (1971).

    Article  CAS  Google Scholar 

  12. Pismen, L.M.:Phys. Rev.,A23, 334 (1981).

    Google Scholar 

  13. Vafek, O., Pospisil, P. and Marek, M.: Scientific Papers of the Prague Institute of Chemical Technology, K14, 179(1979).

    Google Scholar 

  14. HerschkowitzKaufman, M. and Nicolis, G.:J. Chem. Phys.,56, 1890 (1972).

    Article  CAS  Google Scholar 

  15. Ortoleva, P. and Ross, J.:J. Chem. Phys.,63, 3398 (1975).

    Article  CAS  Google Scholar 

  16. Brown, K.J. and Eilbeck, J.C.:Bull. Math. Biol.,44. 87 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Yeo, S.C. Dissipative structures in a reaction-diffusion system. Korean J. Chem. Eng. 7, 188–197 (1990). https://doi.org/10.1007/BF02697351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697351

Keywords

Navigation