Skip to main content
Log in

Development of low-cost microfluidic systems for lab-on-a-chip biosensor applications

  • Original Article
  • Published:
NanoBiotechnology

Abstract

In this work, we develop low-cost microfluidic systems based on polydimethylsiloxane (PDMS) for lab-on-a-chip applications. PDMS microfluidic structures have been fabricated by micromolding, PDMS casting, and plasma bonding processes. The micromolding technique is used to fabricate PDMS slabs with micro-sized grooves, and the complete microchannel is formed by bonding PDMS slab with glass or PDMS substrate. The molding procedure using SU-8 photoresist patterning on silicon wafer, PDMS microchannel fabrication, and PDMS surface treatment using oxygen plasma and TiO2 coating, are discussed. The various parameters for oxygen plasma treatment including RF power and treatment time are studied in order to obtain conditions for good bonding with the glass substrate. The best condition for plasma treatment is found to be the low RF power (8 W) with 5 min treatment time. In addition, TiO2 coating with oxygen plasma treatment has been applied to make PDMS surface more hydrophilic to improve aqueous solution compatilbility. The microfluidic channels for various applications, including sample injection cross channel, micropump channel, T and Y sample mixers, PCR thermocyling chamber and channel, capillary electrophoresis flow channel, and conductimetric systems have been fabricated. Finally, a typical application of the PDMS chip in a flow injection conductimetric system for sodium chloride detection has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, T. M. H. and Hsing, I. M. (2006),Anal. Chem. Acta 556, 26–37.

    Article  CAS  Google Scholar 

  2. Wilke, R. and Buttgenbach, S. (2003),Biosens. Bioelectro. 19, 149–153.

    Article  CAS  Google Scholar 

  3. Liu, D., Zhoub, X., Zhong, R., (2006),Talanta 68, 616–622.

    Article  CAS  Google Scholar 

  4. Guber, A.E., Heckele, M., Herrmann, D., et al. (2004),Chem. Eng. J. 101, 447–453.

    Article  CAS  Google Scholar 

  5. Inatomi, K., Izuo, S., Lee, S., Ohji, H., and Shiono, S. (2003),Microelectr. Engineering 70, 13–18.

    Article  CAS  Google Scholar 

  6. Yu, X., Zhang, D., Li, T., Hao, L., and Li, X. (2003),Sens. Actuators A 108, 103–107.

    Article  Google Scholar 

  7. Becker, H. and Heim, U. (2000),Sens. Actuators 83, 130–135.

    Article  Google Scholar 

  8. Duffy, D. C., McDonald, J. C., Schueller O. J. A., and Whitesides, G. M. (1998),Anal. Chem. 70, 4974–4984.

    Article  CAS  Google Scholar 

  9. Baltussen, E., Sandra, P., David F., Janssen, H. G., and Cramers, C. (1999),Anal. Chem. 71, 5213–5216.

    Article  CAS  Google Scholar 

  10. Han, J. B., Wang, X., Wang, N., et al. (2006),Surf. Coating Technol. 200, 4876–4878.

    Article  CAS  Google Scholar 

  11. Chen, L., Ren, J., Bi, R., and Chen, D. (2004),Electrophoresis 25, 914–921.

    Article  CAS  Google Scholar 

  12. Hu, S., Ren, X., Bachman, M., Sims, C. E., Li, G. P., and Allbritton, N. (2002),Anal. Chem. 74, 4117–4123.

    Article  CAS  Google Scholar 

  13. Linder, V., Verpoorte, E., Thormann, W., de Rooji, N. F., and Sigrist, H. (2001),Anal. Chem. 73, 4181–4189.

    Article  CAS  Google Scholar 

  14. Wongkittisuksa, B., Limsakul, C., Thavarungkul, P., et al. (2003),NECTEC Tech. J. 4, 369–374.

    Google Scholar 

  15. Park, K. H., Park, H. G., Kim, J. H., and Seong, K. H. (2006),Biosens. Bioelectro. 22, 613–620.

    Article  CAS  Google Scholar 

  16. Zhang, Z. L., Crozatier, C., Berre, M. L., and Chen, Y. (2005),Microelectr. Engineering 78–79, 556–562.

    Article  Google Scholar 

  17. Limbut, W., Thavarungkul, P., Kanatharana, P., Asawatreratanakul, P., Limsakul, C., and Wongkittisuksa, B. (2004),Biosens. Bioelectro. 19, 813–821.

    Article  CAS  Google Scholar 

  18. Thavarungkul, P., and Håkanson, H., Holst, O., and Mattiasson, B. (1991),Biosens. Bioelectro. 6, 101–107.

    Article  CAS  Google Scholar 

  19. Thavarungkul, P., and Kanatharana, P. (1994),J. Sci. Soc. Thailand 20, 23–30.

    Article  CAS  Google Scholar 

  20. Thavarungkul, P., Asawatreratanakul, P., Kanatharana, P., Duenjumroon, J., and Chaibundit, C. (1999),Sci. Asia 25, 157–163.

    Article  CAS  Google Scholar 

  21. Suwansa-ard, S., Kanatharana, P., Asawatreratanakul, P., Limsakul, C., Wongkittisuksa, B., and Thavarungkul, P. (2005),Biosens. Bioelectro. 21, 445–454.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adisorn Tuantranont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuantranont, A., Lomas, T., Maturos, T. et al. Development of low-cost microfluidic systems for lab-on-a-chip biosensor applications. Nanobiotechnol 2, 143–149 (2006). https://doi.org/10.1007/BF02697269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697269

Key Words

Navigation