Skip to main content
Log in

Simultaneous detection of multiple mutations conferring streptomycin resistance inMycobacterium tuberculosis using nanoscale engineered biomagnetites

  • Original Article
  • Published:
NanoBiotechnology

Abstract

Streptomycin-resistantMycobacterium tuberculosis has been attributed to two distinct classes of mutations, including point mutations within therpsL gene (three mutation sites) and therrs gene (seven mutation sites). We have developed an automated simultaneous detection system of multiple mutations based on thermal dissociation curve analysis for streptomycin resistance inM. tuberculosis using streptavidin-labeled bacterial magnetic particles (SA-BacMPs). With consideration for time and cost effectiveness, we used fewer PCR reactions, with a long PCR target (rpsL, 182 bp;rrs, 467 bp) including multiple mutation sites. In order to improve the amount of target DNA captured on BacMPs through streptavidin-biotin binding, several reaction conditions, such as salt species and concentration in the buffer, and reaction temperature were examined. Compared to the commonly used 1M NaCl solution, the amount of DNA captured on SA-BacMPs was about six times greater (approx 5 pmoles/50 μg BacMPs) in the 2M LiCl solution. Under these conditions, automated nucleotide discriminations of 10 targets inrpsL andrrs genes of streptomycin-resistant and wild-type strains were successfully performed at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phadtare, S., Vinod, V. P., Wadgaonkar, P. P., Rao, M., and Sastry, M. (2004),Langmuir 20, 3717–3723.

    Article  CAS  Google Scholar 

  2. Yang, H. H., Zhang, S. Q., Chen, X. L., Zhuang, Z. X., Xu, J. G., and Wang, X. R. (2004),Anal. Chem. 76, 1316–1321.

    Article  CAS  Google Scholar 

  3. Akerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N., and Ruoslahti, E. (2002),Proc. Natl. Acad. Sci. USA 99, 12,617–12,621.

    Article  CAS  Google Scholar 

  4. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W., and Nie, S. (2004),Nat. Biotechnol. 22, 969–976.

    Article  CAS  Google Scholar 

  5. Prasad, B. L., Stoeva, S. I., Sorensen, C. M., Zaikovski, V., and Klabunde, K. J. (2003),J. Am. Chem. Soc. 125, 10,488–10,489.

    Article  CAS  Google Scholar 

  6. Bruckl, H., Panhorst, M., Schotter, J., Kamp, P. B., and Becker, A. (2005),IEE Proc. Nanobiotechnol. 152, 41–46.

    Article  CAS  Google Scholar 

  7. Matsunaga, T., Tadokoro, F., and Nakamura, N. (1990).IEEE Trans. Magn. 26, 1557–1559.

    Article  CAS  Google Scholar 

  8. Nakamura, N., Burgess, J. G., Yagiuda, K., Kudo, S., Sakaguchi, T., and Matsunaga, T. (1993).Anal. Chem. 65, 2036–2039.

    Article  CAS  Google Scholar 

  9. Maruyama, K., Takeyama, H., Nemoto, E., Tanaka, T., Yoda, K., and Matsunaga, T. (2004),Biotechnol. Bioeng. 87, 687–694.

    Article  CAS  Google Scholar 

  10. Tsuchiya, M., Nakao, H., Katoh, T., et al. (2005).Hum. Reprod. 20, 974–978.

    Article  CAS  Google Scholar 

  11. Nakagawa, T., Hashimoto, R., Maruyama, K., Tanaka, T., Takeyama, H., and Matsunaga, T. (2006).Biotechnol. Bioeng. 94, 862–868.

    Article  CAS  Google Scholar 

  12. Tong, X. and Smith, L. M. (1992),Anal. Chem. 64, 2672–2677.

    Article  CAS  Google Scholar 

  13. Diaz-Gonzales, M., Gonzales-Garcia, M. B., and Costa-Garcia, A. (2005).Biosens. Bioelectron. 20, 2035–2043.

    Article  Google Scholar 

  14. Pavlou, A. K., Magan, N., Jones, J. M., Brown, J., Klatser, P., and Turner, A. P. (2004).Biosens. Bioelectron. 20, 538–544.

    Article  CAS  Google Scholar 

  15. Fend, R., Kolk, A. H., Bessant, C., Bujitels, P., Klatser, P. R., and Woodman, A. C. (2006).J. Clin. Microbiol. 44, 2039–2045.

    Article  Google Scholar 

  16. Telenti, A. (1997),Clin. Chest Med. 18, 55–64.

    Article  CAS  Google Scholar 

  17. Ramaswamy, S. and Musser, J. M. (1998),Tuber. Lung Dis. 79, 3–29.

    Article  CAS  Google Scholar 

  18. Matsunaga, T., Kawasaki, M., Yu, X., Tsujimura, N., and Nakamura, N. (1996).Anal. Chem. 68, 3551–3554.

    Article  CAS  Google Scholar 

  19. Tanaka, T., Maruyama, K., Yoda, K., et al. (2003),Biosens. Bioelectron. 19, 325–330.

    Article  CAS  Google Scholar 

  20. Holmberg, A., Blomstergren, A., Nord, O., Lukacs, M., Lundeberg, J., and Uhlen, M. (2005),Electrophoresis 26, 501–510.

    Article  CAS  Google Scholar 

  21. Brown, T. A. (1999),Genomes. Wiley-Liss, New York.

    Google Scholar 

  22. Kinoshita, M. and Harano, Y. Bull. (2005),Chem. Soc. Japan 78, 1431–1441.

    Article  CAS  Google Scholar 

  23. Hyre, D. E., Amon, L. M., Penzotti, J. E., et al. (2002).Nat. Struct. Biol. 9, 582–585.

    CAS  Google Scholar 

  24. Collins, K. D. (1995),Proc. Natl. Acad. Sci. USA 92, 5553–5557.

    Article  CAS  Google Scholar 

  25. Hribar, B., Southall, N. T., Vlachy, V., and Dill, K. A. (2002),J. Am. Chem. Soc. 124, 12,302–12,311.

    Article  CAS  Google Scholar 

  26. Gorby, Y. A., Beveridge, T. J., and Blakemore, R. P. (1987).J. Bacteriol. 170, 834–841.

    Google Scholar 

  27. Tanaka, T. and Matsunaga, T. (2000),Anal. Chem. 72, 3518–3522.

    Article  CAS  Google Scholar 

  28. Arakaki, A., Webb, J., and Matsunaga, T. (2003),J. Biol. Chem. 278, 8745–8750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, K., Uchida, N., Takeyama, H. et al. Simultaneous detection of multiple mutations conferring streptomycin resistance inMycobacterium tuberculosis using nanoscale engineered biomagnetites. Nanobiotechnol 2, 71–78 (2006). https://doi.org/10.1007/BF02697261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697261

Key words

Navigation