Skip to main content
Log in

Rapid growth of particles by coagulation between particles in silane plasma reactor

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The changes of particle size distribution were investigated during the rapid growth of particles in the silane plasma reactor by the discrete-sectional model. The particle size distribution becomes bimodal in the plasma reactor and most of the large sized particles are charged negatively, but some fractions of small sized particles are in a neutral state or even charged positively. As the mass generation rate of monomers increases or as the monomer diameter decreases, the large sized particles grow more quickly and the particle size distribution becomes bimodal earlier. As the mass generation rate of monomers decreases, the electron concentration in the plasmas increases and the fraction of particles charged negatively increases. With the decrease in monomer diameter, the electron concentration decreases in the beginning of plasma discharge but later increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C:

constant, 0.73

dl :

particle diameter in the lth size regime (DSR+SSR) [cm]

d1 :

monomer diameter [cm]

e:

elementary charge of electron [C]

E(v, v):

enhancement factor of collision frequency function taking into account the particle charge distribution of colliding particles

f(q):

particle charge distribution function

Fl,neg, Fl,neu, Fl,pos :

fractions of particles which are charged negatively, neutral, or charged positively in the lth size regime (DSR+SSR)

I(q):

flux of species which pass through the q particle charges

kB :

Boltzmann constant, 1.38×10-16 [gcm2/sec2K]

mR :

reduced mass between the moving particles

M:

mass of species [g]

n(v, t):

size distribution function [cm-6]

N:

number concentrations of species [cm-3]

Nl :

number concentrations of particles in the lth size regime (DSR+SSR) [cm-3]

q:

particle charges [e]

ql :

average charges of particle in the lth size regime (DSR+SSR) [e/particle]

qi :

volume concentration variable for i-mers in the discrete size regime

Qk :

volume concentration variable for section k particles

S1 :

mass generation rate of monomers [g/cm3s]

t:

time [s]

T:

temperature of species [K]

Tg :

gas temperature, 300 K

v:

particle volume variable [cm3]

V1 :

monomer volume [cm3]

v k :

particle volume upper boundary of sectional k [cm3]

v k-1 :

particle volume lower boundary of sectional k [cm3]

vR :

relative velocity between the moving particles

Β*i,j :

general property coagulation coefficient (Βi, j/(jv1))

Β(u, v):

collision frequency function between particles [Friedlander, 1977]

Β:

collision integral for coagulations of two sectional size regime particles

Βki,k/D:

collision integral for coagulations of sectionk particles and i-mers in discrete size regime

Β DDi,j,k :

collision integral for coagulations of two discrete size regime particles

ε0 :

permittivity of free space, 8.854× 10-21 [C2/dyncm2]

ρd :

particle density [g/cm3]

Σ 2l :

variance in lth discrete size regime or sectional size regime

Τres :

residence time [s]

0:

initial

e:

electron

l :

lth size regime (DSR+SSR)

+:

positive ion

-:

negative ion

References

  • Bouchoule, A. and Boufendi, L., “High Concentration Effects in Dusty Plasma”,Plasma Sources Sci. Technol.,3, 292 (1994).

    Article  CAS  Google Scholar 

  • Boufendi, L. and Bouchoule, A., “Particle Nucleation and Growth in a Low-Pressure Argon-Silane Discharge”,Plasma Sources Sci. Technol.,3, 262 (1994).

    Article  CAS  Google Scholar 

  • Childs, M. A. and Gallagher, A., “Small Particle Growth in Silane Radio-Frequency Discharge”,J. Appl. Phys.,87, 1076 (2000).

    Article  CAS  Google Scholar 

  • Choi, S. J. and Kushner, M. J., “The Role of Negative Ions in the Formation of Particles in Low-Pressure Plasmas”,J. Appl. Phys.,74(2), 853 (1993).

    Article  CAS  Google Scholar 

  • Friedlander, S. K., “Smoke, Dust and Haze”, Wiley-Interscience, New York (1977).

    Google Scholar 

  • Graves, D. B., Daugherty, J. E., Kilgore, M. D. and Porteous, R. K., “Charging, Transport and Heating of Particles in Radiofrequency and Electron Cyclotron Resonance Plasmas”,Plasma Sources Sci. Tehcnol.,3, 433 (1994).

    Article  CAS  Google Scholar 

  • Gelbard, F., Tambour, Y. and Seinfeld, J. H., “Sectional Representations for Simulating Aerosol Dynamics”,J. Colloid Interface Sci.,76(2), 541 (1980).

    Article  CAS  Google Scholar 

  • Gordiets, B. F. and Ferreira, C. M., “Charge Distribution Function of Plasma Dust Particles with Secondary Electron Emission”,J. Appl. Phys.,86(8), 4118 (1999).

    Article  CAS  Google Scholar 

  • Goree, J., “Charging of Particles in a Plasma”,Plasma Sources Sci. Technol.,3, 400 (1994).

    Article  CAS  Google Scholar 

  • Horanyi, M. and Goertz, C. K., “Coagulation of Dust Particles in a Plasma”,The Astrophysical Journal,361, 155 (1990).

    Article  Google Scholar 

  • Howling, A. A., Sansonnens, L., Dorier, J.-L. and Hollenstein, Ch., “Negative Hydrogenated Silicon Ion Clusters as Particle Precursors in RF Silane Plasma Deposition Experiments”,J. Phys. D: Appl. Phys.,26, 1003 (1993).

    Article  CAS  Google Scholar 

  • Hung, F Y. and Kushner, M. J., “Shapes of Agglomerates in Plasma Etching Reactors”,J. Appl. Phys.,81(9), 5960 (1997).

    Article  Google Scholar 

  • Kim, D.-J. and Kim, K.-S., “Modeling of the Evolutions of Negative Ions in Silane Plasma Chemical Vapor Deposition for Various Process Conditions”,Jpn. J. Appl. Phys.,36, 4989 (1997).

    Article  CAS  Google Scholar 

  • Kim, D.-J. and Kim, K.-S., “The Factors Affecting the Particle Distributions Inside the Silane PCVD Reactor for Semiconductor Processing”,Aerosol. Sci. Technol.,32, 293 (2000a).

    Article  CAS  Google Scholar 

  • Kim, K.-S. and Ikegawa, M., “Particle Growth and Transport in Silane Plasma Chemical Vapor Deposition”,Plasma Sources Sci. Technol.,5, 311 (1996).

    Article  CAS  Google Scholar 

  • Kim, K.-S. and Kim, D.-J., “Modeling of Rapid Particle Growth by Coagulation in Silane Plasma Reactor”,J. Appl. Phys.,87(6), 2691 (2000b).

    Article  CAS  Google Scholar 

  • Kortshagen, U. and Bhandarkar, U., “Modeling of Particle Coagulation in Low Pressure Plasmas”,Phys. Rev. E,60(1), 887 (1999).

    Article  CAS  Google Scholar 

  • Landgrebe, J. D. and Pratsinis, S. E., “A Discrete-Sectional Model for Particle Production by Gas-Phase Chemical Reaction and Aerosol Coagulation in the Free-Molecular Regime”,J. colloid Interface Sci.,139(1), 63 (1990).

    Article  CAS  Google Scholar 

  • Lieberman, M. A. and Lichtenberg, A. J., “Principles of Plasma Discharges and Materials Processing; Wiley-Interscience, New York (1994).

    Google Scholar 

  • Matsoukas, T., Russell, M. and Smith, M., “Stochastic Charge Fluctuations in Dusty Plasmas”,J. Vac. Sci. Technol.,A14(2), 624 (1996).

    Google Scholar 

  • Riggs, J. B., “An Introduction to Numerical Methods for Chemical Engineers,”, Texas Tech University Press, Texas (1988).

    Google Scholar 

  • Samsonov, D. and Goree, I, “Particle Growth in a Sputtering Discharge”,J. Vac. Sci. Technol.,A17(5), 2835 (1999).

    Google Scholar 

  • Selwyn, G. S., “The Unconventional Nature of Particles”,Semicond. Int.,16, 72 (1993).

    Google Scholar 

  • Selwyn, G. S., “Optical Characterization of Particle Traps”,Plasma Sources Sci. Techmol.,3, 340 (1994).

    Article  CAS  Google Scholar 

  • Shiratani, M., Kawasaki, H., Fukuzawa, T., Tsuruoka, H., Yoshioka, T., Ueda, Y., Singh, S. and Watanabe, Y., “Simultaneous In Situ Measurements of Properties of Particulates in RF Silane Plasmas Using a Polarization-Sensitive Laser-Light-Scattering Method”,J. Appl. Phys.,79(1), 104 (1996).

    Article  CAS  Google Scholar 

  • Watanabe, Y., “Dust Phenomena in Processing Plasmas”,Plasma Phys. Control. Fusion,39, A59 (1997).

    Article  CAS  Google Scholar 

  • Wu, C.-Y. and Biswas, P., “Study of Numerical Diffusion in a Discrete-Sectional Model and Its Application to Aerosol Dynamics Simulation”,Aerosol. Sci. Technol.,29, 359 (1998).

    Article  CAS  Google Scholar 

  • Wu, J. J. and Flagan, R. C., “A Discrete-Sectional Solution to the Aerosol Dynamic Equation”,J. colloid Interface Sci.,123(2), 339 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyo-Seon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DJ., Kim, KS. Rapid growth of particles by coagulation between particles in silane plasma reactor. Korean J. Chem. Eng. 19, 495–504 (2002). https://doi.org/10.1007/BF02697163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697163

Key words

Navigation