Skip to main content
Log in

Mathematical modeling for chemical vapor deposition in a single-wafer reactor: Application to low-pressure deposition of Tungsten

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model for low pressure chemical vapor deposition in a single-wafer reactor in stagnation point flow has been developed to investigate the reactor performance. The transient transport equations for a simulated reactor include continuity, momentum, energy, and gaseous species balances. The model equations are simultaneously solved by using a numerical technique of orthogonal collocation on finite element method. Simulation studies have been performed to gain an understanding of tungsten low pressure chemical vapor deposition process. The model is then used to optimize the deposition rate and uniformity on a wafer, and the effects of operating conditions on deposition rate are studied to examine how system responses are affected by changes in process parameters. Deposition rate and uniformity calculated at the steady state are observed to be very sensitive to both temperature and total pressure. In addition, the model predictions for tungsten deposition from hydrogen reduction of tungsten hexafluoride have been compared with available experimental data in order to demonstrate the validity of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cp :

molar heat capacity [cal/mole K or cal/g K]

D:

diffusion coefficient [cm2/sec]

DT :

thermal diffusion coefficient [g cm/sec]

G:

deposition rate [å/min]

g:

gravitational acceleration [cm/sec2]

m:

molecular weight [g/mol]

n:

number of gaseous species

p:

pressure [torr or atm]

r:

radial coordinate [cm]

Rg :

universal gas constant [atm cm3/mol K, or cal/mol K]

ℜ:

surface reaction rate [mol/cm2 sec]

t:

time [sec]

T:

temperature [K]

T*:

reduced temperature [κT/ε]

v:

gas velocity [cm/sec]

x:

mole fraction

z:

axial coordinate [cm]

ε:

Lennard-Jones potential energy between two molecules [gcm2/sec2]

κ:

Boltzmann’s constant [=3.30×10-24 cal/K]

λ:

thermal conductivity [cal/cm sec K]

Μ:

viscosity [g/cm sec]

Ν:

stoichiometric coefficient of the surface reaction

ρ:

fluid density [g/cm3]

Σ:

collision diameter for the Lennard-Jones parameter [å]

Ω:

mass fraction

o:

reactor inlet

i:

index or species

j:

index

m:

mixture

r:

radial direction

s:

susceptor

T:

thermal diffusion

w:

wall

z:

axial direction

References

  • Arora, R. and Pollard, R., “A Mathematical Model for Chemical Vapor Deposition Influenced by Surface Reaction Kinetics: Application to low pressure deposition of tungsten”,J. Electrochem. Soc.,138(5), 1523 (1991).

    Article  CAS  Google Scholar 

  • Blewer, R. S. (ed.), “Tungsten and Other Refractory Metals for VLSI Applications”, MRS Publishers, Pittsburg, PA (1986).

    Google Scholar 

  • Blewer, R. S. and McConica, C. M. (eds.), “Tungsten and Other Refractory Metals for VLSI Applications IV”, MRS Publishers, Pittsburg, PA (1989).

    Google Scholar 

  • Broadbent, E. K. (ed.), “Tungsten and Other Refractory Metals for VLSI Applications II”, MRS Publishers, Pittsburg, PA (1987).

    Google Scholar 

  • Broadbent, E. K. and Ramiller, C. L., “Selective Low Pressure Chemical Vapor Deposition of Tungsten”,J. Electrochem. Soc.,131(6), 1427 (1984).

    Article  CAS  Google Scholar 

  • Bryant, W. A., “Kinetics of Tungsten Deposition by the Reaction of WF6 and Hydrogen”,J. Electrochem. Soc.,125(9), 1534 (1978).

    Article  CAS  Google Scholar 

  • Bullis, W. M. and O’Mara, W. C., “Large-Diameter Silicon Wafer Trends”,Solid State Technol.,36(4), 59 (1993).

    Google Scholar 

  • Cale, T. S., Jain, M. K. and Raupp, G. B., “Programmed Rate Processing to Increase Throughput in LPCVD”,J. Electrochem. Soc.,137(5), 1526 (1990).

    Article  Google Scholar 

  • Cale, T. S., Park, J.-H., Raupp, G. B. and Jain, M. K., “Impacts of Temperature and Reactant Flow Rate Transients on LPCVD Tungsten Silicide Film Properties”, in Rapid Thermal and Integrated Processing, Mat. Res. Soc. Symp. Proc.,224, MRS, 171 (1991).

    CAS  Google Scholar 

  • Cale, T. S., Park, J.-H, Gandy, T. H., Raupp, G. B. and Jain, M. K., “Step Coverage Predictions Using Combined Reactor Scale and Feature Scale Models for Blanket Tungsten LPCVD”,Chem. Eng. Comm.,119, 197 (1993).

    Article  CAS  Google Scholar 

  • Cale, T. S., Raupp, G. B., Park, J. H., Jain, M. K. and Rogers, B. R., “The Inherently Transient Nature of Deposition Processes”, in Proceedings of First International Conference of Transport Phenomena in Processing, Guceri, S., ed., Technomic Publishing Co., 127 (1992).

  • Campbell, S. A., Knutson, K. L., Ahn, K. H., Leighton, J. D. and Liu, B., “Gas Flow Patterns and Thermal Uniformity in Rapid Thermal Processing Equipment”,IEEE IEDM Technical Digest, 921 (1990).

  • Chase, Jr. M. W., Davies, C. A., Downey, Jr. J. R., Frurip, D. J., McDonald, R. A. and Syverud, A. N., “JANAFThermochemical Tables”,J. Phys. Chem. Ref. Data,14 (1985).

  • Chatterjee, S., Trachtenberg, I. and Edgar, T. F., “Mathematical Modeling of a Single-Wafer Rapid Reactor”,J. Electrochem. Soc.,139(12), 3682 (1992).

    Article  CAS  Google Scholar 

  • Dobskin, D. M., “Kinetics and Uniformity of Deposition of Borophophosilicate Glass from Silane and Oxygen in a Single-Wafer Reactor”,J. Electrochem. Soc.,139(9), 2573 (1992).

    Article  Google Scholar 

  • Economou, D. J. and Alkire, R. C., “A Mathematical Model for a Parallel Plate Plasma Etching Reactor”,J. Electrochem. Soc.,135(11), 2786 (1988).

    Article  CAS  Google Scholar 

  • Finlayson, B. A., “Nonlinear Analysis in Chemical Engineering”, McGraw-Hill Inc., New York (1980).

    Google Scholar 

  • Fitzjohn, J. L. and Holstein, W. L., “Divergent Flow in Chemical Vapor Deposition Reactors”,J. Electrochem. Soc.,137(2), 699 (1990).

    Article  CAS  Google Scholar 

  • Hasper, A., Holleman, J., Middelhoek, J. and Kleijn, C. R., “W-LPCVD Step Coverage and Modeling in Trenches and Contact Holes”, in Tungsten and Other Advanced Metals for VLSI Applications, S.S. Wong and S. Furukawa, eds., MRS Publishers, Pittsburgh, PA, 127 (1990).

    Google Scholar 

  • Hess, D.W., Jensen, K. F. and Anderson, T. J., “Chemical Vapor Deposition: A Chemical Engineering Perspective”,Rev. Chem. Eng.,3(2), 97 (1985).

    CAS  Google Scholar 

  • Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B.: “Molecular Theory of Gases and Liquids”, John Wiley & Sons, Inc. (1954).

  • Jasinski, T. J. and Kang, S. S., “Application of Numerical Modeling for CVD Simulation Test Case: Blanket Tungsten Deposition Uniformity”, in Tungsten and Other Advanced Metals for ULSI Applications in 1990, G. C. Smith and R. Blumenthal, eds., MRS Publishers, Pittsburgh, PA, 219, (1991).

    Google Scholar 

  • Jasinski, T. J. and Harshbarger, W. R., “Numerical Modeling of Tungsten Disilicide Deposition,”, in Tungsten and Other Refractory Metals for VLSI Applications IV, R. S. Blewer, C. M. McConica, ed., MRS Publishers, Pittsburgh, PA, 189 (1989).

    Google Scholar 

  • Jenkinson, J. P. and Pollard, R., “Thermal diffusion Effects in Chemical Vapor Deposition Reactors”,J. Electrochem. Soc.,131(12), 2911 (1984).

    Article  CAS  Google Scholar 

  • Jensen, K. F., “Micro-Reaction Engineering Applications of Reaction Engineering to Processing of Electronic and Photonic Materials”,Chem. Eng. Sci.,42(5), 923 (1987).

    Article  CAS  Google Scholar 

  • Kleijn, C. R., Hoogendoorn, C. J., Hasper, A., Holleman, J. and Middelhock, J., “Transport Phenomena in Tungsten LPCVD in a Single-Wafer Reactor”,J. Electrochem. Soc.,138(2), 509 (1991).

    Article  CAS  Google Scholar 

  • Kleijn, C. R., van der Meer, Th. H. and Hoogendoorn, C. J., “A Mathematical Model LPCVD in a Single Wafer Reactor”,J. Electrochem. Soc.,136(11), 3423 (1989).

    Article  Google Scholar 

  • Kleijn, C. R., “A Mathematical Model of the Hydrodynamics and Gas-Phase Reactions in Silicon LPCVD in a Single-Wafer Reactor”,J. Electrochem. Soc.,138(7), 2190 (1991).

    Article  CAS  Google Scholar 

  • Lam, D. K. and Koch, G. R., “Vacuum System Considerations for Plasma Etching Equipment”Solid State Technol.,23(9), 99 (1980).

    Google Scholar 

  • McConica, C. M. and Krishnamani, K., “The Kinetics of LPCVD Tungsten Deposition in a Single Wafer Reactor”,J. Electrochem. Soc.,133(12), 2542 (1986).

    Article  CAS  Google Scholar 

  • McConica, C. M. and Churchill, S., “Step Coverage Prediction During Blanket CVD Tungsten Deposition”,in Tungsten and Other Refractory Metals for VLSI Applications III, V. A. Wells, ed., MRS Publishers, Pittsburgh, PA, 257 (1988).

    Google Scholar 

  • Moslehi, M. M., Chapman, R. A., Wong, M., Paranjipe, A., Najm, H. N., Kuehne, J., Yekley, R. L. and Davis, C. j., “Single-Wafer Integrated Semiconductor Device Processing”,IEEE Trans. Electron Devices, ED-39(1), 4 (1992).

    Article  Google Scholar 

  • Pankratz, L. B., “Thermodynamics Properties of Halides”, U.S. Bureau of Mines, Bulletin 674 (1984).

  • Park, J.-H., “Deposition Uniformities on a Wafer and in a Trench for Tungsten Silicide LPCVD in a Single-Wafer Reactor”,Korean J. Chem. Eng.,13, 105 (1996a).

    CAS  Google Scholar 

  • Park, J.-H., “Programmed Rate Chemical Vapor Deposition to Decreasing Processing Time”,J. of Ind. & Eng. Chemistry,2(2), 171 (1996b).

    CAS  Google Scholar 

  • Park, J.-H., “Simulation of Low Pressure Chemical Vapor Deposition Using Combined Reactor Scale and Feature Scale Models”, Ph.D Dissertation, Arizona State University, U.S.A. (1992).

    Google Scholar 

  • Park, S.-K. and Economou, D. J., “Numerical Simulation of a Single-Wafer Isothermal Plasma Etching Reactor”,J. Electrochem. Soc.,137(8), 2624 (1990).

    Article  CAS  Google Scholar 

  • Pauleau, Y. and Lami, Ph., “Kinetics and Mechanism of Selective Tungsten Deposition by LPCVD”,J. Electrochem. Soc.,132(11), 2779 (1985).

    Article  CAS  Google Scholar 

  • Rana, V. V. S., Joshi, R. V. and Ohdomari, I., (eds.), “Advanced Metallization for ULSI Applications”, MRS Publishers, Pittsburgh, PA (1992).

    Google Scholar 

  • Reid, R. C., Prausnitz, J. M. and Poling, B. E., “The Properties of Gases & Liquids”, McGraw-Hill, Inc., New York (1988).

    Google Scholar 

  • Riely, P. E. and Clark, T. E., “Integrated Chemical Vapor Deposition and Plasma Etchback of Tungsten in Multichamber, Single-Wafer System”,J. Electrochem. Soc.,138(10), 3008 (1991).

    Article  Google Scholar 

  • Rode, E. J. and Schmitz, J. E. J., “Study of Reactor Design by Computational Fluid Dynamics”, in Advanced Metallization for ULSI Applications, V. V. S. Rana, R. V. Joshi, and I. Ohdomari, eds., MRS Publishers, Pittsburgh, 105 (1992).

    Google Scholar 

  • Skelly, D. W., Lu, T.-M. and Woodruff, D. W. “Metallization Techniques”, in VLSI Electronics: Microstructure Science, Academic Press,15, 101 (1987).

  • Smith, G. C. and Blumenthal, R. (eds.), “Tungsten and Other Advanced Metals for ULSI Applications in 1990”, MRS Publishers, Pittsburgh, PA (1991).

    Google Scholar 

  • Suwondo, E., Pibouleau, L., Domenech, S. and Riba, J. P., “Simulation via Orthogonal Collocation on Finite Element of a Chromatographic Column with Nonlinear Isotherm”,Chem. Eng. Comm.,102, 161 (1991).

    Article  CAS  Google Scholar 

  • Svehla, R. A., “Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures”, NASA Tech. Report R-132, Lewis Res. Center, Cleveland, OH (1962).

    Google Scholar 

  • Ulacia, F., Howell, J. I. S., Krner, H. and Werner, Ch., “Flow and Reaction Simulation of a Tungsten CVD Reactor”,Appl. Sur. Sci.,38, 370 (1989).

    Article  Google Scholar 

  • Van der Putte, P., “The Reaction Kinetics of the H2 Reduction of WF6 in the Chemical Vapor Deposition of Tungsten Films”,Philips J. Res.,42, 608 (1987).

    Google Scholar 

  • Werner, C., Ulacia, F J. I., Hopfmann, C. and Flynn, P., “Equipment Simulation of Selective Tungsten Deposition”,J. Electrochem. Soc.,139(2), 566 (1992).

    Article  CAS  Google Scholar 

  • Wong, F., “Single Wafer RTP-CVD Epitaxial Deposition Technology”,Solid State Technol.,32(Oct.), 53 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH. Mathematical modeling for chemical vapor deposition in a single-wafer reactor: Application to low-pressure deposition of Tungsten. Korean J. Chem. Eng. 19, 391–399 (2002). https://doi.org/10.1007/BF02697145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697145

Key words

Navigation