Skip to main content
Log in

Approximate design of fully thermally coupled distillation columns

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An approximate design procedure for fully thermally coupled distillation columns (FTCDCs) is proposed and applied to example ternary systems. The procedure gives a fast solution of structural and operation design for a preliminary study of the FTCDC. The structural information resolves the design difficulty, caused from the interlinking streams of the column, which is encountered when a conventional design procedure is implemented. The design outcome explains that how the thermodynamic efficiency of the FTCDC is higher than that of a conventional two-column system and how the system of a separate prefractionator is different from a dividing wall structure. From the design result of three example systems with three different feed compositions, the useful performance of the proposed scheme is proved. In addition, the structural design of the FTCDC gives better understanding of the system and leads to high efficiency design of the column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

flow rate of component A in feed [mol/h]

B:

flow rate of component B in feed or bottom product [mol/h]

C:

flow rate of component C in feed [mol/h]

D:

overhead product

F:

feed

i:

component

L:

liquid flow rate [mol/h]

NC:

number of components

NF:

feed location

NP:

side product location

NR:

upper interlinking stage in a main column

NS:

lower interlinking stage in a main column

NT:

number of trays in a main column

NT2 :

number of trays in a prefractionator

RP:

liquid split ratio

S:

side product

V:

vapor flow rate [mol/h]

VC:

vapor split ratio

x:

liquid composition [mol fraction]

y:

vapor composition [mol fraction]

α:

relative volatility

Β:

middle component split ratio

Φ:

parameter in Eq. (5)

i:

component i

j:

component j

n:

tray number from bottom

References

  • Abdul Mutalib, M.I., Zeglam, A. O. and Smith, R., “Operation and Control of Dividing Wall Distillation Columns, Part 1: Degrees of Freedom and Dynamic Simulation”,Trans IChemE,76, Part A, 308 (1998a).

    Article  Google Scholar 

  • Abdul Mutalib, M. I., Zeglam, A. O. and Smith, R., “Operation and Control of Dividing Wall Distillation Columns, Part 2: Simulation and Pilot Plant Studies Using Temperature Control”,Trans IChemE,76, Part A, 319 (1998b).

    Article  Google Scholar 

  • Agrawal, R. and Fidkowski, Z. T., “Are Thermally Coupled Distillation Columns Always Thermodynamically More Efficient for Ternary Distillation”,Ind. Eng. Chem. Res.,37, 3444 (1998).

    Article  CAS  Google Scholar 

  • Annakou, O. and Mizsey, P., “Rigorous Comparative Study of Energy-Integrated Distillation Schemes”,Ind. Eng. Chem. Res.,35, 1877 (1996).

    Article  CAS  Google Scholar 

  • Carlberg, N. A. and Westerberg, A. W., “Temperature-Heat Diagrams for Complex Columns. 3. Underwood’s Method for the Petlyuk Configuration”,Ind. Eng. Chem. Res.,28, 1386 (1989).

    Article  CAS  Google Scholar 

  • Cerda, J. and Westerberg, A. W., “Shortcut Methods for Complex Distillation Columns. 1. Minimum Reflux”,Ind. Eng. Chem. Process Des. Dev.,20, 546 (1981).

    Article  CAS  Google Scholar 

  • Chavez, C. R., Seader, J. D. and Wayburn, T. L., “Multiple Steady-State Solutions for Interlinked Separation Systems”,Ind. Eng. Chem. Fundam.,25, 566 (1986).

    Article  Google Scholar 

  • Douglas, J. M., “Conceptual Design of Chemical Processes”, McGraw-Hill Book Co., New York, U.S.A., 569 (1988).

    Google Scholar 

  • Dünnebier, G. and Pantelides, C. C., “Optimal Design of Thermally Coupled Distillation Columns”,Ind. Eng. Chem. Res.,38, 162 (1999).

    Article  Google Scholar 

  • Fidkowski, Z. and Krolikowski, L., “Thermally Coupled System of Distillation Columns: Optimization Procedure”,AIChE J.,32, 537 (1986).

    Article  CAS  Google Scholar 

  • Glinos, K. N. and Malone, M. F., “Design of Sidestream Distillation Columns”,Ind. Eng. Chem. Process Des. Dev.,24, 822 (1985a).

    Article  CAS  Google Scholar 

  • Glinos, K. N. and Malone, M. F., “Minimum Vapor Flows in a Distillation Column with a Sidestream Stripper”,Ind. Eng. Chem. Process Des. Dev.,24, 1087 (1985b).

    Article  CAS  Google Scholar 

  • Glinos, K. N. and Malone, M. F., “Optimality Regions for Complex Column Alternatives in Distillation Systems”,Chem. Eng. Res. Des.,66, 229 (1988).

    CAS  Google Scholar 

  • Gmehling, J., Onken, U. and Arlt, W., “Vapor-Liquid Equilibrium Data Collection”, DECHEMA, Frankfurt/Main, Germany, Vol. I, Part 1, 2b and 6a, 562, 504, 649 (1980).

    Google Scholar 

  • Kim, Y. H. and Luyben, W. L., “Effect of Recycle on Chemical Reactor Controllability”,Chem. Eng. Comm.,128, 65 (1994).

    Article  Google Scholar 

  • Kim, Y. H., “Design of a Fully Thermally Coupled Distillation Column Based on Dynamic Simulations”,Korean J. Chem. Eng.,17, 570 (2000).

    CAS  Google Scholar 

  • Kim, Y. H., “Structural Design of Extended Fully Thermally Coupled Distillation Columns”,Ind. Eng. Chem. Res.,40, 2460 (2001).

    Article  CAS  Google Scholar 

  • Kim, Y. H., “Structural Design and Operation of a Fully Thermally Coupled Distillation Column”,Chem. Eng. J.,85, 289 (2002).

    Article  CAS  Google Scholar 

  • King, C. J., “Separation Processes”, 2nd ed., McGraw-Hill, New York, 235–237, 421(1980).

    Google Scholar 

  • Lee, Y. S., Kim, M. G., Ha, D. M., Oda, A., Ito, C., Aragaki, T. and Mori, H., “Analysis of Packed Distillation Columns with a Rate-Based Model”,Korean J. Chem. Eng.,14, 321 (1997).

    CAS  Google Scholar 

  • Lestak, F., Egenes, D., Yoda, H. and Hamnett, C., “Kellogg Divided Wall Column Technology for Ternary Separation”, Proc. The 5th Int. Symposium on Sep. Tech. between Korea and Japan, 233 (1999).

  • McCabe, W. L. and Smith, J. G., “Unit Operations of Chemical Engineering”, 3rd ed., McGraw-Hill Book Co., New York, 568 (1976).

    Google Scholar 

  • Midori, S. and Nakahashi, A., “Industrial Application of Continuous Distillation Columns with Vertical Partition”, Proc. The 5th Int. Symposium on Sep. Tech. between Korea and Japan, 221 (1999).

  • Petlyuk, F. B., Platonov, V. M. and Slavinskii, D. M., “Thermodynamically Optimal Method for Separating Multicomponent Mixtures”,Int. Chem. Eng.,5, 555 (1965).

    Google Scholar 

  • Seader, J. D. and Henley, E. J., “Separation Process Principles”, John Wiley & Sons, Inc., New York, 510 (1998).

    Google Scholar 

  • Triantafyllou, C. and Smith, R., “The Design and Optimisation of Fully Thermally Coupled Distillation Columns”,Trans. IChemE,70, Part A, 118 (1992).

    CAS  Google Scholar 

  • Underwood, A. J. V., “Fractional Distillation of Multicomponent Mixtures”,Chem. Eng. Prog.,44, 603 (1948).

    CAS  Google Scholar 

  • Underwood, A. J. V., “Fractional Distillation of Multicomponent Mixtures: a Numerical Example”,Chem. Eng. Prog.,45, 609 (1949).

    CAS  Google Scholar 

  • Wang, J. C. and Henke, G. E., “Tridiagonal Matrix for Distillation”,Hydrocarbon Process.,45, 155 (1966).

    CAS  Google Scholar 

  • Wolff, E. A. and Skogestad, S., “Operation of Integrated Three-Product (Petlyuk) Distillation Columns”,Ind. Eng. Chem. Res.,34, 2094 (1995).

    Article  CAS  Google Scholar 

  • Yoo, K. P., Lee, K. S., Lee, W. H. and Park, H. S., “Diagnosis of Thermodynamic Efficiency in Heat Integrated Distillation”,Korean J. Chem. Eng.,5, 123 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Han Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H., Nakaiwa, M. & Hwang, K.S. Approximate design of fully thermally coupled distillation columns. Korean J. Chem. Eng. 19, 383–390 (2002). https://doi.org/10.1007/BF02697144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697144

Key words

Navigation