Skip to main content
Log in

Numerical simulations and kinetic theory of bubbly liquids rheology under microgravity

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Simple shear flows of dilute suspensions of spherical bubbles at large Reynolds numbers are studied by using numerical simulations and kinetic theory. It is shown that the mean-square bubble velocity is very sensitive to the volume fraction and Reynolds number of the bubbles as well as on initial conditions. The balance of energy contained in bubble velocity fluctuations plays an important role in the rheology of the dispersed phase, which is generally non-Newtonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auton, T. R., Hunt, J. C. R. and Prud’homme, M., “The Forces Exerted on a Body in Inviscid Unsteady Non-Uniform Rotational Flow”,J. Fluid Mech.,197, 241 (1988).

    Article  Google Scholar 

  • Bando, Y., Kuze, T., Sugimoto, T., Yasuda, K. and Nakamura, M., “Development of Bubble Column for Foam Separation”,Korean J. Chem. Eng.,17, 597 (2000).

    CAS  Google Scholar 

  • Biesheuvel, A., “Structure and Stability of Void Waves in Bubbly Flows”, in Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems (ed. S. Morioka and L. van Wijngaarden), Proc. IUTAM Sympos., Tokyo, Japan, 1, 1994 (Kluwer Academic, 1995).

  • Biesheuvel, A. and Gorissen, W. C., “Void Fraction Disturbances in a Uniform Bubbly Fluid”,Int. J. Multiphase Flow,16, 211 (1990).

    Article  CAS  Google Scholar 

  • Biesheuvel, A. and van Wijnggaarden, L., “Two-Phase Flow Equations for Dilute Dispersion of Gas Bubbles in Liquid”,J. Fluid Mech.,148, 301 (1984).

    Article  CAS  Google Scholar 

  • Bulthuis, H. F., Prosperetti, A. and Sangani, A. S., “Particle Stress’ in Disperse Two-Phase Potential Flow”,J. Fluid Mech.,294, 1 (1995).

    Article  CAS  Google Scholar 

  • Chapman, S. and Cowling, T. G., “The Mathematical Theory of Non-Uniform Gases”, 3rd Edn., Cambridge University Press (1970).

  • Grad, H., “On the Kinetic Theory of Rarefied Gas”,Commun. Pure Appl. Math.,2, 331 (1949).

    Article  Google Scholar 

  • Hasimoto, H., “On the Periodic Fundamental Solutions of the Stokes Equations and their Application to Viscous Flow Past a Cubic Array of Spheres”,J. Fluid Mech.,5, 317 (1959).

    Article  Google Scholar 

  • Kim, S. J., Cho, Y. J., Lee, C. G., Kang, Y. and Kim, S. D., “Diagnosis of Bubble Distribution in a Three-Phase Bubble Column Reactor for Dehydration of Ortho-Boric Acid”,Korean J. Chem. Eng.,19, 175 (2002).

    CAS  Google Scholar 

  • Kumaran, V., Tao, H.-K. and Koch, D. L., “Velocity Distribution Function for a Bidisperse, Sedimenting Particle-Gas Suspension”,Int. J. Multiphase Flow,19, 665 (1993).

    Article  CAS  Google Scholar 

  • Ladd, A. J. C., “Hydrodynamic Transport Coefficient of Random Dispersions of Hard Spheres”,J. Chem. Phys.,93, 3484 (1990).

    Article  CAS  Google Scholar 

  • Lessard, R. R. and Zieminski, S. A., “Bubble Coalescence and Gas Transfer in Aqueous Electrolytic Solutions”,Ind. Eng. Chem. Fundam.,10, 260 (1971).

    Article  CAS  Google Scholar 

  • Sangani, A. S. and Didwania, A. K., “Dispersed-Phase Stress Tensorin Flows of Bubbly Liquids at Large Reynolds Number”,J. Fluid Mech.,248, 27 (1993a).

    Article  CAS  Google Scholar 

  • Sangani, A. S. and Didwania, A. K., “Dynamic Simulations of Flows of Bubbly Liquids at Large Reynolds Numbers”,J. Fluid Mech.,250, 307(1993b).

    Article  CAS  Google Scholar 

  • Sangani, A. S., Zhang, D. Z. and Prosperetti, A., “The Added Mass, Basset, and Viscous Drag Coefficients in Nondilute Bubbly Liquids Undergoing Small-Amplitude Oscillatory Motion”,Phys. Fluids A,3, 2955 (1991).

    Article  CAS  Google Scholar 

  • Smereka, P., “On the Motion of Bubbles in a Periodic Box”,J. Fluid Mech.,254, 79 (1993).

    Article  CAS  Google Scholar 

  • Tsao, H.-L. and Koch, D. L., “Collisions of Slightly Deformable, High Reynolds Number Bubbles with Short-Range Repulsive Forces”,Phys. Fluids,6, 2591 (1994).

    Article  Google Scholar 

  • Zhang, D. Z. and Prosperetti, A., “Averaged Equations for Inviscid Disperse 2-Phase Flow”,J. Fluid Mech.,267, 185 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Yoon Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SY., Sangani, A.A. Numerical simulations and kinetic theory of bubbly liquids rheology under microgravity. Korean J. Chem. Eng. 19, 363–370 (2002). https://doi.org/10.1007/BF02697141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697141

Key words

Navigation